E-JADE is a Marie Sklodowska-Curie Research and Innovation Staff Exchange (RISE) action, funded by the EU under Horizon2020

E-JADE Mid-Term Review

Nanometre scale beam handling at the ATF

ATF2 @ KEK (Japan)

Philip Bambade / WP2

This project is funded by the European Union under Grant Agreement no. 645479

WP 2: ATF ↔ Linear Collider

History of minimum beam size in ATF2

Presented by K.Kubo at IPAC2014

WP2: organization, objectives and tasks

Participant Short Name	CERN	CNRS	CSIC	KEK	RHUL	UoO	UoT
	R. Tomas	P. Bambade	A. Faus-Golfe	N. Terunuma	P. Karataev	P. Burrows	S. Komamiya
Person-months per Participant:	31	50	12	13	21	49	2

Objectives

- 1. Achievement and maintenance of nanometre scale beam size
- 2. Measurement and feedback to stabilise beam position at nanometre level
- 3. Development of advanced beam diagnostics instrumentation
- 4. Control of beam halo and background mitigation
- 5. Training of junior scientists and students in accelerator science

Task 2.1 Beam Size Minimisation (CERN, CNRS, KEK & UoT)
Task 2.2 Wake Field (CERN, CSIC, KEK & RHUL)
Task 2.3 Ground Motion (CERN, CNRS & KEK)
Task 2.4 Halo Collimation and Backgrounds (CNRS, CSIC, KEK & RHUL)
Task 2.5 Beam Instrumentation and control (CNRS, KEK, RHUL, UOXF & UoT)
Task 2.6 Beam Position Feedback (KEK & UOXF)

WP2: schedule and deliverables

- 2 deliverable reports submitted : HaloCollBgds-1, Instr-1
- 1 deliverable report under preparation : **GM-1**

→ ок

Month 12 HaloCollBgds-1: Report on halo measurement and control using diamond sensor and collimators

Month 12 Instr-1: Report on performance optimisation of installed high resolution beam position and size instrumentation

Month 24 Instr-2: Design report of optical transition/diffraction radiation combined measurement station including initial beam tests

Month 18 GM-1: Reports on synchronisation of GM and orbit measurements and on new GM sensor performance

Month 24 BeamSize-1: Report on performance of installed octupole magnet pairs in correcting 3rd order optical aberrations

Month 24 Wakefield-1: Report on wakefield simulation and measurements including mitigation plans and implications for the Linear Collider

Month 24 Feedback-1: Report on operation of collision point feedback system

Month 24 HaloCollBgds-2: Report on integrated simulation and evaluation of beam transport including beam instrumentation and charged particle backgrounds

Month 36 Wakefield-2: Report on wakefield free steering performance to mitigate wakefields

Month 36 GM-2: Final report on correlation between GM and orbit measurements and implications for GM based feed-forward

Month 48 Feedback-2: Final report on performance of interaction-point feedback system, and implications for its implementation in the Linear Collider

Month 48 BeamSize-2: Final report on beam size minimisation in horizontal and vertical dimensions using optimised optics, and implications for the Linear Collider

WP2 deliverable : HaloCollBgds-1 (1)

Horizontal and Vertical Diamond Scanners (DSh, DSv) 1.5 m after BDUMP magnet. Installed + commissioned in Nov-Dec 2014 and May-June 2015, respectively.

WP2 deliverable : HaloCollBgds-1 (2)

2. Horizontal direction as a function of DR vacuum pressure

- Vertical beam halo is mainly determined by elastic beam gas scattering in the damping ring(DR). The beam size increases with the beam intensity as expected from the intrabeam scattering.
- Horizontal beam halo is dominated by the other source for less dependence on the DR vacuum pressure.

RJ. Yang, Poster for the IPAC 2016, 4 May 2016

WP2 deliverable : HaloCollBgds-1 (3)

RJ. Yang, presented at the ATF operation meeting, 1 April 2016

WP2 deliverable : Instr-1(1)

- Timing of the IPBSM laser is matched to 2nd bunch timing
- Beam size measurement is done by measuring 100-200 pulses
- It is not possible to measure the beam size of 1st&2nd bunch at the same time

WP2 deliverable : Instr-1(1)

FONT upstream feedback (Task 2.6)

WP2 deliverable : Instr-1(3)

2nd bunch beam position measurement with/without FONT feedback with respect to varying artificial input jitter

WP2 deliverable : Instr-1(4)

2nd bunch beam size measurement with/without FONT feedback with respect to varying artificial input jitter

WP2 : Recent progress

2nd bunch beam size measurement with/without FONT feedback in the presence of natural beam jitter

19th ATF2 Project Meeting

January 13-15, 2016 LAL-Orsay, France

https://agenda.linearcollider.org/event/6939/

⇒ E-JADE WP2 annual workshop

Wednesday 13

- Status of beamline alignment, hardware and software at ATF
- 19th Technical Board & System Group Coordinator Session
- Thursday 14
 - Status of beam tuning for 37nm beam (Goal-1)
 - Beam size tuning at the nominal beam intensity, wakefield issues

Friday 15

- IP beam stabilization at nanometer level (Goal-2)
- Future Plans

Participants

on-going or recent ATF2 graduate student remote participant

* speaker

- * ARAKI Sakae, KEK Japan
- * BAMBADE Philip CNRS LAL IN2P3 France BERGAMASCHI Michele CERN Switzerland
- * BETT Douglas CERN Switzerland
- * BLASKOVIC KRALIEVIC, Neven Oxford University U.K
- * BROMWICH Talitha University of Oxford U.K
 BURROWS Philip Oxford University U.K
 FAUS-GOLFE Angeles IFIC LAL Spain
- * FUSTER Nuria IFIC Spain
- * JANG, Si-Won KNU Korea
- * JEREMIE, Andrea CNRS LAPP IN2P3 France
- * KANO, Yuya University of Tokyo Japan
- * KIEFFER Robert CERN Switzerland
- * KUBO, Kiyoshi, KEK Japan
- * NAITO Takashi, KEK Japan
- * OKUGI, Toshiyuki KEK Japan
- * PATECKI Marcin CERN Switzerland
- * PLASSARD Fabien CERN Switzerland SCHUETZ Anne DESY Germany
- * TAUCHI Toshiaki KEK Japan
- * TERUNUMA Nobuhiro KEK Japan TOMAS Rogelio CERN Switzerland
- * WALLON Sandry CNRS LAL IN2P3 France WHITE Glen SLAC USA

YAMAMOTO Akira KEK & CERN Japan

YANG Renjun CNRS LAL IN2P3 France

WP2 : Secondment report

	CE	RN	CI	A	CN	IRS	CS	SIC	DE	DESY		RHUL		UOXF		Target /
Beneficiaries	KEK	UoT	KEK	UoT	KEK	UoT	KEK	UoT	KEK	UoT	KEK	UoT	KEK	UoT	_days	Actual
WP1	6	6	0	0	0	0	0	0	0	0	0	0	0	0	12	1,3%
WP2	90	0	0	0	159	0	33	0	0	0	199	0	120	0	601	12,3%
WP3	0	0	0	0	66	0	0	0	187	89	0	0	0	5	347	10,7%
WP4	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2	0,1%
WP5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,0%
Subtotal	<i>96</i>	8	0	0	225	0	33	0	187	<i>89</i>	199	0	120	5		
TOTAL															962	
days	1	04	()	27	25	3	3	2	76	19	99	1	25		
Target / Actual	3	%	0	%	13	3%	8	%	12	2%	29	9%	7	%		

Total in contract = 163 months \rightarrow have used 12.3 % so far, less than ~ 30% expected... Explanations :

- slow start
- about 50% less ATF beam time in 2015, limited by electricity cost \rightarrow 11 / 21-23 weeks
- eligibility criteria lack clarity and are interpreted non uniformly...
- Mitigation :
 - extend scope to include research on "nanobeams" at SuperKEKB \rightarrow **next slides**
 - secure sufficient budget for ATF beam time in 2017-2018?
 - clarify eligibility criteria ? \rightarrow for discussion

30 May 2016

WP2 : Extension of scope (1)

- Luminosity tuning & optimization
- Beam halo/loss modeling & monitoring
 - 1) Phase 1 : 2016/Feb. → Jun.

single beam commissioning, vac. scrubbing
 no luminosity (no final focus), no detector

- 2) Phase 2 : 2017/Nov. \rightarrow 2018/Mar.
 - colliding beam commissioning, no vertex detector
- 3) Phase 3 : from 2018/autumn
 - full luminosity for physics running

5.5	e+ 4 GeV	3.6 A
		Belle II
6	e- 7 GeV 2.6 A	
New beam pipe	SuperKEKB	
& bellows	2	
		K
		Add / modify RF systems for higher beam current
low emitt		
to inject		Positron source
Damping ring		New positron target /
	Li/ V. 📢	capture section
	Low emittance gun	
	Low emittance electrons	
	to inject	\bigcirc

paramatar	KEI	KB	Super	unita		
parameters	LER	HER	LER	HER	units	
Beam energy	Еb	ь 3.5 8		4 7.007		GeV
Half crossing angle	φ	11		41.	mrad	
# of Bunches	Ν	1584		250		
Horizontal emittance	٤x	18	24	3.2	4.6	nm
Emittance ratio	κ	0.88	0.66	0.27	0.25	%
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.30	mm
Beam currents	lь	1.64	1.19	3.6	2.6	А
beam-beam param.	ξ	0.129	0.090	0.088	0.081	
Bunch Length	σz	6.0	6.0	6.0	5.0	mm
Horizontal Beam Size	σx*	150	150	10	11	um
Vertical Beam Size	σ y*	0.94		0.048	0.062	um
Luminosity	L	2.1 x 10 ³⁴		8 x 1	cm ⁻² s ⁻¹	

Tests of optical tuning methods and luminosity optimization techniques at SuperKEKB

SuperKEKB uses novel "nanobeam" scheme

→ mitigates beam-beam and hour-glass effects...

→ Lumi × 40

WP2 : Extension of scope (2)

Task 2.7 (new): Tests of optical tuning methods and luminosity optimization techniques at SuperKEKB

ATF2 & Linear Colliders ↔ SuperKEKB

- Instrumentation for beam loss monitoring*
- Beam halo modeling*
- Optimization of collimation*

*active European contribution (additional resources)

- Ground motion measurements, modeling and mitigation techniques
- Feedback to stabilize the transverse positions of the beams at the IP*
- Optical tuning to minimize the vertical beam size the IP
- 1. Fits well into steps defined to achieve overall WP2 goals \rightarrow cross-fertilization
- 2. E-JADE covers the successive SuperKEKB commissioning phases
- 3. SuperKEKB = high priority KEK project \rightarrow some WP2 scientists already contribute

WP2: Conclusions and prospects

- Nanobeam handling techniques are a crucial aspect of future linear colliders such as ILC and CLIC
- Also of utmost importance for circular e+e- colliders (e.g. SuperKEKB, and CEPC / FCC-ee in the future)
- ATF @ KEK (Japan) is unique in the world for R&D on nanobeam technologies
- E-JADE/WP2 takes full advantage of ATF to develop technical / scientific knowhow and train the next generation of accelerator experts
- ATF dedicated session tomorrow \rightarrow Audiencia Reina

→ major contribution to the development of human resources and skills in Europe, at the state of the art in the field of accelerator science

- Deliverables in 2016 \rightarrow 1 in June 2016 + 5 in December 2016
- Delay with secondments \rightarrow expect to catch up
 - **1.** allocated beam time ILC agenda in Japan
 - 2. clarification of eligibility criteria
 - **3.** extension of scope to include SuperKEKB nanobeams (priority project at KEK)

EXTRA SLIDES

Scheme of Interaction Point Beam Size Monitor

Concept of IPBSM

