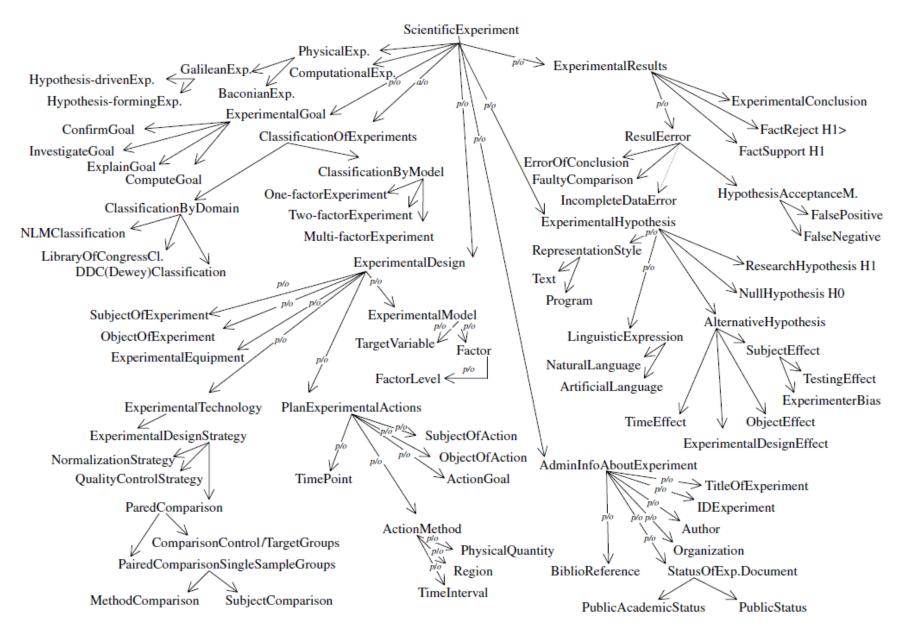
ATLAS Data Analysis Ontology: ontological representation of investigations

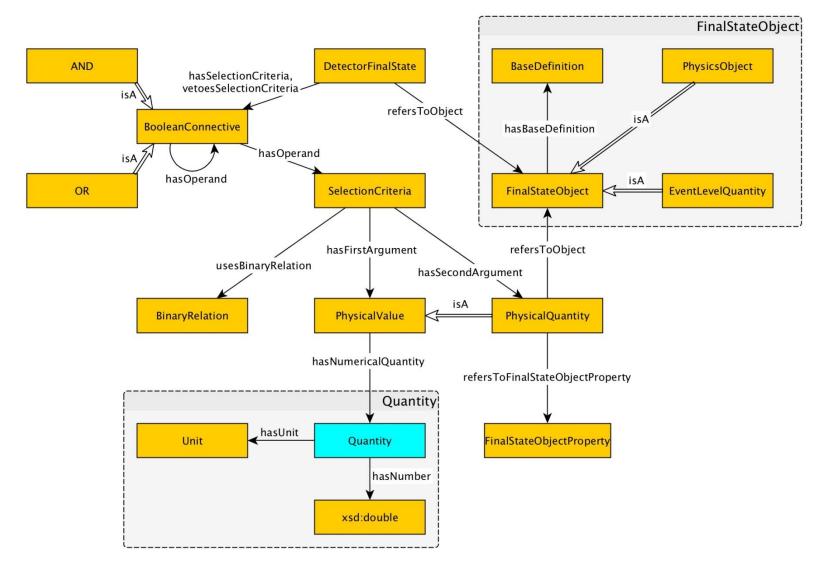
DKB Meeting

PanDA Workshop Apr 21-22 2016 at CERN

- Goals of DKB:
 - This was in the context of a conversation on whether we can/should work to capture and present the whole process from physicist idea → production intent
 → production request → production status → completion of the full processing chain → available data
 - With ability to drill down within that chain for processing status, data availability, configuration and so on, drawing on content in prodsys, AMI, Rucio etc
- Data Sources:
 - PanDA/JEDI, DEFT, Rucio, AMI, AGIS, JIRA, googledocs, ...
- Currently R&D project, proceed to realistic use cases after a May technical/planning meeting at CERN


CISP: Core Information about Scientific Papers

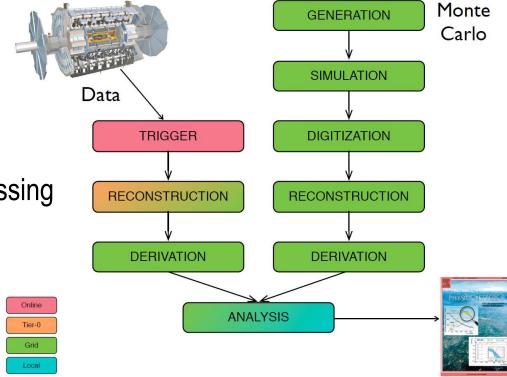
- Identifies the main components of scientific investigations
- Metadata about the content of scientific papers
- CISP classes:
 - Goal of Investigation
 - Motivation
 - Object of investigation
 - Research Method
 - Experiment
 - Observation
 - Result
 - Conclusion


EXPO: Ontology of scientific experiments

- A very complete ontology about scientific experiments proposed proposed at the University of Wales, Aberystwyth
- ~200 concepts to allow providing a formal description of experiments for efficient analysis
- EXPO classes:
 - Experimental design strategy
 - Fact
 - Field of study
 - Procedure
 - Variable
 - Experimental technology
 - Scientific activity
 - Hypotesis forming
 - Interpreting results

EXPO fragment

Detector Final State


ATLAS Data Analysis Ontology Classes

- Data Analysis Description:
 - Data Analysis Unique Identifier [Ref.Code from GLANCE "TOPQ-2016-03"]
 - Short Title ["MS dilepton top mass at 8 TeV"]
 - Full Title ["Measurement of the Top Quark Mass in the dilepton channel from 8 TeV ATLAS Data"]
 - Analysis Team
 - Status (active, finished,...)
- Experimental model:
 - Detector Final State:
 - Luminosity [8 TeV, ...]
 - Energy [20 femtobarn⁻¹, ...]
 - Data Used [Run 1, Run 2, ...]
 - Year [YYYY]
 - Other parameters
 - SW Release
 - ATLAS Data Samples
 - Monte Carlo data samples
 - LHC Data Samples
 - Data Processing Chain
 - LHC Data Processing
 - Monte-Carlo Data Processing
- Data analysis is classified by the following categories:
 - Physical topics (Standard Model physics, Higgs physics, SUSY, B-physics and light states, Exotics, Top physics, ...)
 - Physical groups (FTAG, BPHY, REPR, TOPQ, ANALYSIS, Exotics, etc)
 - Sub Groups
 - Project (mc12_8TeV, mc12_13TeV, data10_7TeV, data11_2p76TeV, ...)
 - Campaign/subcampaign
 - Domain of experiment (NML Classification, Library of Congress, DDC (Dewey) Classification)
- Experimental Results
 - Publications & Conf Notes

Experimental model

- Detector Final State:
 - Luminosity
 - Energy
 - Data Used
- SW Release
- Data Processing Chain
 - LHC Data Processing
 - Trigger
 - Reconstruction
 - Derivation
 - Monte-Carlo Data Processing
 - Generation
 - Simulation
 - Digitization
 - Reconstruction
 - Derivation

We can use DetectorFinalState ontology, proposed in this paper: http://dase.cs.wright.edu/sites/default/files/WOP2015_pattern_abstract_5.pdf

ATLAS Data Samples

Data Samples attributes:

- Dataset ID
- Dataset type
- Project
- Stream
- Generator
- Data format
- Production step
- Number of files
- Number of events
- Total size
- Data samples
 - Signal
 - Production (ggF, VBF, VH, ttH)
 - Decay
 - Background
 - Category (Top, WW, ZV, ZX, Higgs)
 - Process (t⁻t+ boson, t + boson, WW, ZZ, ...)
 - Generator (MADGRAPH, POWHEG, SHERPA, Pythia, Pythia8)

- Data formats
 - RAW
 - ADO
 - DADO
 - EVNT
 - HITS
- Dataset types
 - Real Data
 - Monte Carlo (MC)
- Triggers
 - The first level trigger (LVL1)
 - the second level trigger (LVL2)
 - the High Level Trigger (HLT)
- Streams
 - Muon
 - Egamma

- ...