

RD51 Collaboration Meeting Aveiro 2016

Outline

New Structures and Technologies

GridPix

The large area GridPix readout and the Pixel-TPC

CAST GridPix detector upgrade

• IZM-7

Summery and outlook

The Bonn detector development group

- Prof. Klaus Desch
- Dr. Jochen Kaminski

- GridPix production: Dr. Yevgen Bilevych
- Pixel-TPC: Daniel Danilov, Alexander Hamann
 Michael Lupberger

IZM-7 tests: Lucian Scharenberg

The Timepix ASIC

Charge sensitive digital readout chip

Properties

- 1.4 x 1.4 cm² active surface
- 256 x 256 pixel matrix
- 55 x 55 µm² per pixel
- Amplifier, discriminator in each pixel
- 14 bits count clock cycles
 - → TOT(charge) or TOA(arrival time)
- Clock up to 100 MHz in every pixel
- Threshold level ~ 500 e⁻ (90 e⁻ ENC)

Use bump bond pads as charge collecting anode in gaseous detectors

Timepix+Micromegas = GridPix

Aluminium mesh on chip

- Hole to pixel alignment
- Pillar height uniformity

Timepix+Micromegas = GridPix

Aluminium mesh on chip

- Hole to pixel alignment
- Pillar height uniformity

Use photolithographic process

- Pioneered and optimised by Nikhef and University of Twente
- Production on single chip basis

Timepix+Micromegas = GridPix

Aluminium mesh on chip

- Hole to pixel alignment
- Pillar height uniformity

Use photolithographic process

- Pioneered and optimised by Nikhef and University of Twente
- Production on single chip basis

High demand for GridPix:

- R&D groups
- Equipment of larger surfaces
- → Production on wafer scale
 Wafer processing at IZM Berlin

Large area GridPix module

Octoboard as basic unit: eight ASICs in a chain

CAD design by Robert Menzen

Successful test as readout of LCTPC prototype TPC at DESY (2013)

Large area GridPix module

Octoboard as basic unit: eight ASICs in a chain

CAD design by Robert Menzen

Successful test as readout of LCTPC prototype TPC at DESY (2013)

96 GridPix module: 12 Octoboards

Test beam with the large area module

- Finally achieved: 3 modules (1x96 GridPix, 2x32 GridPix)
- Readout by 5 SRS FECs via HDMI cables
- Low voltage by ATX power supplies and dedicated electronics

Developed by Alexander Hamann

Test beam with the large area module

- Finally achieved: 3 modules (1x96 GridPix, 2x32 GridPix)
- Readout by 5 SRS FECs via HDMI cables
- Low voltage by ATX power supplies and dedicated electronics

Test beam with the large area module

- Finally achieved: 3 modules (1x96 GridPix, 2x32 GridPix)
- Readout by 5 SRS FECs via HDMI cables
- Low voltage by ATX power supplies and dedicated electronics

- Electrons up to 6 GeV, readout triggered by scintillator in beam
- 1.5 million events
- Different configurations: drift field, magnetic field, beam position...

Event display

Developed by Daniel Danilov

axions/chamele

Decommissioned
LHC-magnet is
pointed to the sun.
Axions and chameleons
produced in the Sun
convert into X-ray
photons.

The magnet is 10 m long and is cooled down to 1.8 K.

In the aperture a magnetic flux of B = 9 T is reached by a current of 13 kA.

The support structure can be turned vertically ~±8° and horizontally ~±40°.

Sun tracking lasts 2×1.5 h/d (Sunrise & Sunset).

https://www.facebook.com/CASTexperiment/videos?ref=page_internal

Detector of 2014/15 run period

Drift volume flushed with Ar/iC_4H_{10} 97.7/2.3

Detector of 2016/17 run period

Muon veto by scintillators (not shown)

New silicon nitride window (200 nm) with strongback Six additional **GridPixes** for veto region

Grid readout by FADC for background reduction

Detector of 2016/17 run period: installed in last week of August

Detector of 2016/17 run period: data taking ongoing

Looking for X-rays converted in detector volume → small spot of ionisation

→ electrons have

almost circular shape in x-y plane

Background: cosmics

→ ionisation along a track

GridPix reliability

universität**bonn**

Goal: make the GridPix more robust to sparks → SiProt layer

Improvement during the different production runs at IZM-Berlin

Experiences with large area GridPix

module: IZM-5 better than IZM-6

Reasons:

- Timepix wafers not clean
- Impurities in SiNi sputtering machine

Results: cracks in SiProt

=> New IZM-7 production

GridPix reliability: IZM-7

Systematic investigation of different productions

- Increase grid voltage and measure energy resolution (Ar/Iso 97,7/2,3)
- IZM-5, 6, 7
- IZM-5/6 break down at 350 380 V (G~<1-5x10⁵, SiProt charges up)
 Timepix electronically defect

• IZM-7 holds 500V for several hours, constantly sparking, 70%

spontaneous sparks, no breakdown

 For all series: energy resolution becomes works → grid suffers

Summary and Outlook

GridPix is advancing very well!

- Large area GridPix detector with ~100 chips
- → data of DESY test beam partly analysed
- → upcoming: LAL test beam with ~MeV electrons (dE/dx measurements)
- Upgraded GridPix at CAST
- → installed and taking data
 - IZM-7
- → by far more spark-proof than previous generations of GridPixes
- → will improve reliability and lifetime of GridPix detectors

In case you are interested in more details...

BACKUP SLIDES

Test beam results

CAD drawing of endplate with reconstructed double track event

50 cm track length with about 3000 hits, each representing an electron from the primary ionisation.

Test beam results

CAD drawing of endplate with reconstructed double track event

50 cm track length with about 3000 hits, each representing an electron from the primary ionisation.

→ demanding for track reco, especially in case of curved tracks

Test beam results

CAD drawing of endplate with reconstructed double track event

50 cm track length with about 3000 hits, each representing an electron from the primary ionisation.

- → demanding for track reco, especially in case of curved tracks
- → preliminary analysis:
- Drift velocity
- Field distortions
- dE/dx resolution
- Single point resolution
- Track angular effect

Looking into the future

The International Linear Collider (ILC)

- High precision physics requires high precision detectors
 - Silicon Detector (SID)
 - International Large Detector (ILD)
- ILD: A general purpose 4π detector
 - Vertex detector
 - Tracking detector:

Time Projection Chamber (TPC)

- Calorimeter
- Magnet system
- Muon detector

Following the tracks: What is a TPC

Gas filled cylinder with central cathode and two anode endplates

CAD design by Tobias Schiffer

Following the tracks: What is a TPC

Charged particle ionises gas atoms along its track→electrons drift to anode

Primary electrons form track projection at the endplates

- \rightarrow measure their (x,y)-position and arrival time t
 - Signal from single electrons too weak for electronics
 - Gas amplification: Micro-pattern gaseous detectors (MPGD)

Example; GEM and Micromegas particles Driftcathode Gain DRIFT ~20 GEM 1 Conversion gap TRANSFER 1 ~20 GEM 2 TRANSFER 2 Amplification gap ~20 GEM 3 3mm Readout PCB ~8000 Readout strip 200μm 500μm Amplifier

MPGDs: very fine grained gas amplification structures

- → High intrinsic resolution, resolves single e⁻ from primary ionisations
- → Anode segmentation should not spoil this resolution
- Traditional readout: pads with rectangular shape

MPGDs: very fine grained gas amplification structures

- → High intrinsic resolution, resolves single e⁻ from primary ionisations
- → Anode segmentation should not spoil this resolution

Traditional readout: pads with rectangular shape

Pad 1x3 mm² to scale of mesh

MPGDs: very fine grained gas amplification structures

- → High intrinsic resolution, resolves single e⁻ from primary ionisations
- → Anode segmentation should not spoil this resolution
- Traditional readout: pads with rectangular shape

New approach: match readout segmentation to MPGD cell size

Use ASIC with charge sensitive pixels

- Charge treated in analogue section
- Digital output
- High density electronics
- Include gas amplification stage

The Pixel-TPC concept

1×6 mm² pads

M. Killenberg: simulations of a Pixel-TPC at CLIC

The Pixel-TPC challenge

- Problem: GridPix 2 cm², TPC endplate 10 m²
 - → Need many GridPixes

The Pixel-TPC challenge

- Problem: GridPix 2 cm², TPC endplate 10 m²
 - → Need many GridPixes
- CEA Octopuce 2010: number of chips limited to 8 by readout system

The Pixel-TPC challenge

- Problem: GridPix 2 cm², TPC endplate 10 m²
 - → Need many GridPixes
- CEA Octopuce 2010: maximum for available readout system
- ILD TPC endplate is modular
 - → Demonstrator: one module (100 GridPixes)
 - New, large scale readout system
 - Data acquisition software and online event display
 - New module design including cooling, low voltage power supply, high voltage for GridPixes

Implementation of the Timepix ASIC in SRS

SRS: multi-purpose system from RD51 at CERN

Implementation of the Timepix ASIC in SRS

- SRS: multi-purpose system from RD51 at CERN
- Development of new FPGA firmware and hardware components

Implementation of the Timepix ASIC in SRS

- SRS: multi-purpose system from RD51 at CERN
- Development of new FPGA firmware and hardware components

Implementation of the Timepix ASIC in SRS

- SRS: multi-purpose system from RD51 at CERN
- Development of new FPGA firmware and hardware components

Implementation of the Timepix ASIC in SRS

- SRS: multi-purpose system from RD51 at CERN
- Development of new FPGA firmware and hardware components

Use scalability to read out a large number of chips

Test setup

- LCTPC collaboration studies different concepts for ILD TPC
- Large Prototype of a TPC in a magnet at DESY

- Drift length: 56 cm
- Magnetic field: up to 1.25 T
- Endplate for up to seven ILD TPC modules
- Setup on a movable stage (lift, rotate, shift)
- Electrons with up to 6 GeV from DESY II synchrotron

Spatial resolution:

In x-y plane, from residuals

Spatial resolution:

In x-y plane, from residuals

Transverse spatial resolution follows diffusion of single electrons.

Reconstructed diffusion constants in agreement with simulations.

Spatial resolution:

In z-direction, from residuals

Drift distance [cm]

Spatial resolution:

In z-direction, from residuals

Longitudinal spatial resolution differs from diffusion of single electrons.

Reconstructed diffusion constants not in agreement with simulations.

Many degrading effects: Time walk, low time resolution, field distortions

Energy loss resolution:

Thin slices of 1 mm track length, count number of hits (primary electrons)

Landau like distribution when hits in a 10 mm interval of chip centre is projected

Energy loss resolution:

Thin slices of 1 mm track length, count number of hits (primary electrons)

Mean number of hits in intervals of 1 mm along the track with a resolution of (14.0 ± 0.3) % in the peak fitted by a Gaussian distribution.

Energy loss resolution:

Thin slices of 1 mm track length, count number of hits (primary electrons)

Truncated mean (reject 5 % highest, 5 % lowest means) number of hits in intervals of 1 mm along the track with a resolution of (9.9 ± 0.5) % in the peak fitted by a Gaussian distribution.

When extrapolated to full ILD TPC 5.7 % could be achieved.

Single point resolution of the detector for different track angles with respect to the y-axis

(= rotation of the endplate with respect to the beam-axis)

Single point resolution of the detector for different track angles with respect to the y-axis

(= rotation of the endplate with respect to the beam-axis)

As expected for a Pixel-TPC, the resolution does not strongly depend on the track angle.

Reliability of chips

Not functioning chips

Reliability of chips

Not functioning chips

Reliability of chips

Not functioning chips

X: additional dead/noisy

Correlation with wafer number

Taking into account chips which have to be replaced during production

W62: 12% bad, W67: 30% bad,

W68: 60% bad, W74: 35% bad

Summary

- MPGDs with pixelised readout can improve detector performance
- Pixel-TPC concept: Endplate consists out of many GridPixes
- R&D for a demonstrator module: successful test beams 2013 and 2015
- Test beam 2015: Demonstrator with 160 GridPixes on 3 modules
 - Results from analysis: excellent single point resolution (independent of track angle), excellent dE/dx resolution
 - Uncorrected field distortions degrade some results
 - → Feasibility of Pixel-TPC has been proven!

The concept could improve the precision of the ILD TPC.

Outlook

- Improve and extend data analysis
- Field distortions and alignment need further investigations
- New algorithm for track finding in a Pixel-TPC required
- Timepix3 offers new possibilities
- Further R&D especially for reliability of GridPixes needed

Backup slides

2003: MicroPattern Gas Detectors with pixel read-out

R. Bellanzini, G. Spandre, Nucl. Instrum. Methods Phys. Res., Sect. A 513 (2003) 231

- 2003: MicroPattern Gas Detectors with pixel read-out R. Bellanzini, G. Spandre, Nucl. Instrum. Methods Phys. Res., Sect. A 513 (2003) 231
- 2004: The readout of a GEM or Micromegas-equipped TPC by means of the Medipix2 CMOS sensor as direct anode

P. Colas et al., Nucl. Instrum. Methods Phys. Res., Sect. A 535 (2004) 506

- 2003: MicroPattern Gas Detectors with pixel read-out R. Bellanzini, G. Spandre, Nucl. Instrum. Methods Phys. Res., Sect. A 513 (2003) 231
- 2004: The readout of a GEM or Micromegas-equipped TPC by means of the Medipix2 CMOS sensor as direct anode
 P. Colas et al., Nucl. Instrum. Methods Phys. Res., Sect. A 535 (2004) 506
- 2005: The Detection of single electrons by means of a micromegas-covered MediPix2 pixel CMOS readout circuit

M. Campbell et al., Nucl. Instrum. Methods Phys. Res., Sect A 540 (2005) 295

- 2003: MicroPattern Gas Detectors with pixel read-out R. Bellanzini, G. Spandre, Nucl. Instrum. Methods Phys. Res., Sect. A 513 (2003) 231
- 2004: The readout of a GEM or Micromegas-equipped TPC by means of the Medipix2 CMOS sensor as direct anode
 P. Colas et al., Nucl. Instrum. Methods Phys. Res., Sect. A 535 (2004) 506
- 2005: The Detection of single electrons by means of a micromegas-covered MediPix2 pixel CMOS readout circuit
 M. Campbell et al., Nucl. Instrum. Methods Phys. Res., Sect A 540 (2005) 295
- 2006: An electron-multiplying 'Micromegas' grid made in silicon wafer postprocessing technology

M. Chefdeville et al. Nucl. Instrum. Methods Phys. Res., Sect. A 556 (2006) 490

- 2003: MicroPattern Gas Detectors with pixel read-out R. Bellanzini, G. Spandre, Nucl. Instrum. Methods Phys. Res., Sect. A 513 (2003) 231
- 2004: The readout of a GEM or Micromegas-equipped TPC by means of the Medipix2 CMOS sensor as direct anode
 P. Colas et al., Nucl. Instrum. Methods Phys. Res., Sect. A 535 (2004) 506
- 2005: The Detection of single electrons by means of a micromegas-covered MediPix2 pixel CMOS readout circuit
 M. Campbell et al., Nucl. Instrum. Methods Phys. Res., Sect A 540 (2005) 295
- 2006: An electron-multiplying 'Micromegas' grid made in silicon wafer postprocessing technology
 - M. Chefdeville et al. Nucl. Instrum. Methods Phys. Res., Sect. A 556 (2006) 490
- 2007: Resolution studies on 5 GeV electron tracks observed with triple-GEM and MediPix2/TimePix-readout
 - A. Bamberger et al., Nucl. Instrum. Methods Phys. Res., Sect. A 581 (2007) 274

- 2003: MicroPattern Gas Detectors with pixel read-out R. Bellanzini, G. Spandre, Nucl. Instrum. Methods Phys. Res., Sect. A 513 (2003) 231
- 2004: The readout of a GEM or Micromegas-equipped TPC by means of the Medipix2 CMOS sensor as direct anode
 P. Colas et al., Nucl. Instrum. Methods Phys. Res., Sect. A 535 (2004) 506
- 2005: The Detection of single electrons by means of a micromegas-covered MediPix2 pixel CMOS readout circuit
 M. Campbell et al., Nucl. Instrum. Methods Phys. Res., Sect A 540 (2005) 295
- 2006: An electron-multiplying 'Micromegas' grid made in silicon wafer postprocessing technology
 - M. Chefdeville et al. Nucl. Instrum. Methods Phys. Res., Sect. A 556 (2006) 490
- 2007: Resolution studies on 5 GeV electron tracks observed with triple-GEM and MediPix2/TimePix-readout
 - A. Bamberger et al., Nucl. Instrum. Methods Phys. Res., Sect. A 581 (2007) 274
- 2009: Performance and prospects of GridPix and Gossip detectors
 H. van der Graaf, F. Hartjes, A. Romaniouk, ATLAS note ATL-P-MN-0016

Endplate CAD

Module assembly

Carrier plate with cooling

Wire bonding of an octoboard

Single octoboard testing

Collection of octoboards

Placement of boards

Completed module

Powering

Timepix chip: power consumption not constant

Example: Octoboard

in counting mode (blue signal low)

→ supply voltage (magenta) breaks

down, supply current (yellow) fluctuates

Solution: Low voltage power board

with LDOs, capacitors and supercaps

+ thick long cables

Drift velocity

- 1. Data cleaning (noisy chips, not properly functioning chips)
- 2. Drift time spectrum analysis → drift velocity

•		
Condition	Simulation	Measurement
E=130 V/cm, B= 0T	5.64±0.01 cm/μs	5.50 ±0.08 cm/μs
E=230 V/cm, B= 0T	7.64±0.01 cm/μs	7.56 ±0.1 cm/μs
E=230 V/cm, B= 1T	7.64±0.01 cm/μs	7.55 ±0.09 cm/μs

InGrid production on wafer scale

Event 1: Typical track

Event 1: with explanations

Event 1: Zoom

Event 2: Double Track

Event 3: Delta electron on track

Field distortions

Simulations by Katrin Kohl

Field distortions and aluminium strips

Hough transformation

Line parametrisation

$$y_i = m \cdot x_i + n$$

$$y = x \cdot \tan(\varphi) + \frac{d_0}{\cos(\varphi)},$$

From Martin Rogowski, Master thesis

Circle Finder

Circle Finder

Investigation on dead chips

- Protective layer Si_xN_y on top of Timepix ASIC
- SEM images show low quality of protection layer in IZM-6 prodution

