

Twin GEM-TPC Prototype (HGB4) Test beam at Jyväskylä – A Development for the Super-FRS at FAIR

Francisco García

Helsinki Institute of Physics – University of Helsinki

13.09.16 Francisco García – Session IV

651

OUTLINE

- 1. Introduction and Motivation
- 2. Prototype Developments
- 3. Simuations and Rate Capability
- 4. Large Dynamic range From Physics
- 5. The HGB4 Twin GEM-TPC Prototype
- 6. Prowering Scheme of HGB4
- 7. Test beam GEANT4 Simulations
- 8. Test beam at Jyväskylä for Protons
- 9. Outlook

INTRODUCTION & MOTIVATION

FAIR is a Facility for Antiproton and Ion Research in Darmstadt

The concept of the FAIR Facility aims for a multifaceted forefront science program, beams of stable and unstable nuclei as well as antiprotons in a wide range of intensities and energies, with optimum beam

Projectile:

Elements p – U Energy up to 1.5 GeV/u Intensity up to 10¹² /spill

Spot size on target: $\sigma_{\rm v}$ = 1.0 mm σ_v = 2.0 mm

Requirements:

- **1.- High rate capability 1 MHz 2.- Large dynamic range, from Physics**
- **3.** Spatial Resolution ~ 500 μ m
- **4.- Tracking efficiency close to 100%**
- **5.- Operation in Air and Vacuum**

qualities Time Table spans till end 2025

Mass production: Q2/2017 – Q4/2019

Part of the Finnish Contribution will be in Diagnostic systems, which is ^a work package dedicated to provide 36 GEM-TPC detectors.

PROTOTYPE DEVELOPMENTS

Flange of the GEM-TPC HB1, read out by delayed lines

Right: The electrodes of the board with strips of $200 \mu m$ width and $500 \mu m$ pitch

And 8 Header Panasonic connectors with 130 Pin each

65Ĭ

Triple GEM stack

First GEM-TPC called HB1 detector (Helsinki Bratislava prototype 1)

GEM-TPC Results for a Test Beam @GSI with ⁶⁴Ni ions at 550 MeV/u

The GEM-TPC shows that the resolution in Y (Drift) reaches value around 130 µm and on X between 130 to 300µm

PROTOTYPE DEVELOPMENTS (cont.)

HB3 with four GEMEX cards GEMEX cards GEMEX cards provide by EE - GSI

65Ĭ

65Ť

PROTOTYPE DEVELOPMENTS (cont.)

HB2/HB3 @ GSI Test Beam with ¹⁹⁷Au at 770 MeV/u

The position resolution in X coordinate for the HB2 (200 μ m) and $HB3$ (300 μ m) for most of the runs.

PROTOTYPE DEVELOPMENTS (cont.)

Efficiency plots for the HB2 and HB3 for all the runs close to 100%

GSI

Efficiency Plots simulations for the GEM-TPC equipped with Delayed lines and with GEMEX readout for the case of P10 and a faster gas. The twin GEM-TPC using a 1.6 us time window and a 21 ns check sum can reach 1.75 MHz

n si

LARGE DYNAMIC RANGE – FROM PHYSICS

Educated guess:

From Physics; the run with largest Dynamic range requires:

The Sensitivty from: Ni: 56 fC up to U: 614 fC (in ${ArCH}_{4}$, Gain=1 and 3 cm thick gas)

 $U \rightarrow 614$ fC \rightarrow 122 fC/strip [cluster:10 strips] (20%) \rightarrow 153 fC (25%)

 $Ni \rightarrow 56$ fC \rightarrow 11.2 fC/strip [cluster:10 strips] (20%) \rightarrow 14.3 fC (25%)

All in all, in order to have some gain to steer the space chage/avalanche

A Gain of the order of $= 10$ is desired, which arrives to 1.5 pC/strip

Keeping this in mind one can find a solution! \rightarrow see next slide

LARGE DYNAMIC RANGE – FROM PHYSICS (cont.)

One solution for large dynamic range is shwon below....

Split the incoming charge into three channels:

1 channel with attenuation of **1**

1 channel with attenuation of **10**

1 channel wth attenuation of **100**

As a result one can have up to 1.5 pC per strip dyamic range \rightarrow based on the assuption of the current n-Xyter v.2.0 with a dynamic range of 15 fC per channel.

The HGB4 – Twin GEM-TPC Prototype

65Ť

POWERING SCHEME of HGB4

POWERING SCHEME of HGB4 (cont.)

Twin GEM-TPC | NOTE: The Supply Power Supply

GSIO

HGB4 CONTROL SUM

65Ĭ

GSİ

TEST BEAM - GEANT4 SIMULATIONS

TEST BEAM - GEANT4 SIMULATIONS (cont.)

Edep in Trigger Scintillator With Coin.

TEST BEAM - GEANT4 SIMULATIONS (cont.)

Edep in HGB4_1_1 With Coin.

TEST BEAM - GEANT4 SIMULATIONS (cont.)

Edep in HGB4_1_2 With Coin.

GSIO

HitsPrimaryPosY:HitsPrimaryPosX

TEST BEAM - GEANT4 SIMULATIONS (cont.)

Educated guess:

From Simulations:

From Oscilloscope:

 $\Delta E \approx 20$ KeV (Landau distr.) $\Delta V = 40$ mV \rightarrow 20 fC

 $N_{e-i\,\text{pair}} = 678\,e^{-1}$ 20 fC = 125000 e-

From Electronics:

 $G = 2$ mV/fC τ_{rise} = 120 ns

Gain_{eff} = 184 (per GEM-TPC)

The other one was several times higher.

Geometry of the Setup

TEST BEAM at JYVÄSKYLÄ for PROTONS (cont.)

Collimator, rate: 65 kHz

GSIO

TEST BEAM at JYVÄSKYLÄ for PROTONS (cont.)

No Collimator, rate: 2.20 MHz

TEST BEAM at JYVÄSKYLÄ for PROTONS (cont.)

Power supply at 7.80 MHz

Connected Modules: Connected to N06C2 sn. 800004 at can0.ma00

Leyend: Channel 0 = Cathode of Field cage (Front) Channel 1 = GEM stack (Front) Channel 2 = Cathode of Field cage (Back) Channel 3 = GEM stack (Back) Channel 4 = Test Bench

TEST BEAM at JYVÄSKYLÄ for PROTONS (cont.)

Online Drift Time Spectra, 5kHz rate, with collimator File #21

TEST BEAM at JYVÄSKYLÄ for PROTONS (cont.)Online Drift Time Spectra, 5kHz rate, with collimator

File #21

TEST BEAM at JYVÄSKYLÄ for PROTONS (cont.)CS with and without collimator

With collimator

Without collimator

OUTLOOK

- 1. Continuing with the optimization of the operational parameters, in terms of time performance keeping same stability
- 2. Procurement of fast preamplifiers, targeting 10, 15 and 50 ns full signal width, to be able to compare with VMM2/3 discretization of 25 ns
- 3. Try to get the CPE connectors implemented on the FB-057 (Bottom flange)
- 4. Prepare a campaign for long terms operation stability and radiation damged studies
- 5. Detection of Protons has becomed possible.....

COLLABORATORS

F. García, R. Turpeinen, J. Heino, J. Äystö Detector Laboratory - Helsinki Institute of Physics – University of Helsinki – Finland

T. Grahn, S. Rinta-Antilla, A. Jokinen

Department of Physics - University of Jyväslkylä - Finalnd

Risch, V. Kleipa, A. Prochazka, C. Ceasar, C. Simon

Detector Laboratory - GSI - Darmstadt - Germany

In, N. Kurz, I. Rusanov, P. Skott, M. Shizu

SI - Darmstadt B. Voss, H. Risch, V. Kleipa, A. Prochazka, C. Ceasar, C. Simon Detector Laboratory – GSI – Darmstadt - Germany

J. Hoffmann, N. Kurz, I. Rusanov, P. Skott, M. Shizu EE - GSI – Darmstadt - Germany

BACKUP SLIDES

CPE Connectors

CPE to SHV cable | CPE female flange

http://www.cpeitalia.it/high_voltage_connectors.html#

BACKUP SLIDES GEM-TPC none Equalization cause

BACKUP SLIDES

helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for muons and pions, are not included. These become significant for muons in iron for β γ \gtrsim 1000, and at lower momenta for muons in higher-Z absorbers. See Fig. 27.21. PDG 2008