

The μ -RWELL: from R&D to industrialization

G. Bencivenni^(a), R. De Oliveira^(b), M. Gatta^(a), G. Morello^(a), A.Ochi^(c) M. Poli Lener (a)

(a) LNF-INFN, Frascati-Italy, (b) CERN, Meyrin – Switzerland, (c) Particle Physics Group, Department of Physics, Kobe University, Kobe, Japan

OUTLINE

■ Why a new Micro Pattern Gas Detector

 \Box The μ -RWELL

Detector performance

 \Box Towards the detector industrialization

Q Summary

Why a new MPGD

The R&D on μ -RWELL is mainly motivated by the wish of improving the

stability under heavy irradiation

& simplify as much as possible

construction/assembly procedures

The µ-RWELL architecture

The µ-RWELL detector is composed by two elements: the **cathode** and the **µ-RWELL_PCB .**

The **µ-RWELL_PCB** is realized by **coupling:**

- **1. a** "**suitable WELL patterned kapton foil** as "amplification stage"
- **2. a "resistive stage"** for the discharge suppression & current evacuation:
	- **i.** "Low particle rate" $(LR) \ll 100$ kHz/cm²: single resistive layer \rightarrow surface resistivity \sim 100 M Ω (CMS-phase2 upgrade - SHIP)
	- **ii.** "High particle rate" (HR) >> 100 kHz/cm²: more sophisticated resistive scheme must be implemented (MPDG_NEXT- LNF & LHCbmuon upgrade)
- **3. a standard readout PCB**

G. Bencivenni et al., 2015_JINST_10_P02008

G. Bencivenni - LNF-INFN - RD51 Meeting - Aveiro, 14th Sept. 2016

Principle of operation

A voltage 400-500 V between the top copper layer and the grounded resistive foil, generates an electric field of ~100 kV/cm into the **WELL which acts as multiplication channel**

drifting electrons **top copper layer kapton HV** $\overline{\rho}$ kapton **^r t** pads

The charge induced on the resistive foil is

dispersed with a *time constant, RC,* determined by

- \Leftrightarrow the *surface resistivity*, ρ
- the *capacitance per unit area,* which depends on the **distance between the resistive foil and the pad readout plane***, t*
- \cdot the *dielectric* constant of the kapton, ε_r

[M.S. Dixit et al., NIMA 566 (2006) 281]

- **The main effect of the introduction of the resistive stage is the suppression of the transition from streamer to spark** by a **local voltage drop** around the avalanche location.
- As a drawback, the **capability to stand high particle fluxes is reduced**, *but an appropriate grounding of the resistive layer with a suitable pitch solves this problem (High Rate scheme)*

The two detector schemes (I)

Low Rate scheme

- **single resistive layer** with **"***edge detector***"** grounding
- "2D" current evacuation
- **"***large current path to ground***"** \rightarrow **higher resistance to ground large Voltage drop spread large gain non-uniformity** \rightarrow low rate ~10-20 kHz/cm²
- *"easy" implementation: kapton foil + PCB coupling*

R&D completed(), engineering on-going*

High Rate scheme

- **double resistive layer** with *"through vias"* **grounding with a O(1cm2) pitch**
- *"3D"* current evacuation
- *"short current path to ground"* \rightarrow **lower resistance to ground small Voltage drop spread small gain non-uniformity** \rightarrow high rate \geq 1 MHz/cm²

 "more demanding" implementation: multi-layer flex w/through-vias + PCB coupling

 R&D almost completed(), engineering ready to be started*

(*) well shape/geometry still to be studied in details

() point-like irradiation, r<<d Ω is the resistance seen by the current generated by a radiation incident in the center of the detector cell*

inferior layer

Ω ~ ρ^s

x d/2πr Ω' ~ ρ^s ' x d'/πr

Ω/ Ω' ~ (ρ^s / ρ^s ') x d/2d'

$$
\text{If } \rho_s = \rho_s' \implies \Omega / \Omega' \sim d/2d' = 25
$$

() Morello's model: appendix A-B (G. Bencivenni et al., 2015_JINST_10_P02008)*

G. Bencivenni - LNF-INFN - RD51 Meeting - Aveiro, 14th Sept. 2016 ⁸

The µ-RWELL_PCB manufacturing (V1.0)

9

4

The µ-RWELL_PCB for High Rate (V2.0)

The µ-RWELL performance: Lab Tests

Detector Gain

prototypes with different resistivity (12-80-880 M Ω/\square) have been tested with an **X-Ray** gun (5.9 keV), with **Ar/iC4H10= 90/10** gas mixture, and characterized by measuring the **gas gain** in **current mode**.

Ar/ISO=90/10

G. Bencivenni - LNF-INFN - RD51 Meeting - Aveiro, 14th Sept. 2016

Rate capability vs layer resistivity

G. Bencivenni - LNF-INFN - RD51 Meeting - Aveiro, 14th Sept. 2016 13

The µ-RWELL performance: Beam Tests

H4 Beam Area (RD51) Muon beam momentum: 150 GeV/c Goliath: B up to 1.4 T

GEMs Trackers

BES III-GEM chambers

 μ -RWELL prototype 12-80-880 MΩ /□ 400 µm pitch strips APV25 (**CC analysis**) $Ar/IC_4H_{10} = 90/10$

GOLIATH

G. Bencivenni - LNF-INFN - RD51 Meeting - Aveiro, 14th Sept. 2016

Space resolution: orthogonal tracks

CC analysis

Ar/ISO=90/10 Ar/ISO=90/10

At **low resistivity** the **charge spread increases** and then **σ is worsening.** At **high resistivity** the **charge spread is too small (Cl_size 1)** then the Charge Centroid method becomes no more effective **(σ pitch/12).**

Towards detector industrialization (LR scheme)

Towards detector industrialization (I) LR scheme

In the framework of the **CMS-phase2 muon upgrade** we are developing **large size µ-RWELL**. The **R&D** is performed in strict collaboration with Italian industrial partners (**ELTOS & MDT**). The work will be performed in **two years** with following schedule:

- 1. Construction & test of the first **1.2x0.5m² (GE1/1) µ-RWELL 2016**
- 2. Mechanical study and mock-up of 1.8x1.2 m² (GE2/1) µ-RWELL **12/2016**
- 3. Construction & test of the first **1.8x1.2m² (GE2/1) µ-RWELL 12/2017- 6/2018**

G. Bencivenni - LNF-INFN - RD51 Meeting - Aveiro, 14th Sept. 2016

Towards detector industrialization (II) (LR scheme)

Principal actors: LNF(Gatta) – Be-Sputter Co Ltd (Ochi) – ELTOS – MDT – CERN (Rui)

- **G1/1 µ-RWELL design @ LNF (M.Gatta)**
- **GE1/1 – PCB-readout manufactured by ELTOS**
- **DLC sputtering on large Kapton foils (w/copper on one side) @ Be-Sputter Co., Ltd (Japan), supervised by A.Ochi**
- **gluing the DLCed foils on the readout -PCBs @ MDT**
- **etching of the kapton foils to produce the WELL-pattern @ CERN**

Readout-PCB production @ ELTOS

\checkmark GE1/1 – PCB-readouts manufatured at ELTOS

DLC sputtering on Kapton foils (supervised by A.Ochi)

 \checkmark DLC sputtering on large Kapton foils (w/copper on one side) completed $\mathcal Q$ Be-Sputter Co., Ltd (Japan)

G. Bencivenni - LNF-INFN - RD51 Meeting - Aveiro, 14th Sept. 2016

Coupling the DLCed Kapton with r/o-PCBs

gluing the DLCed foils on the readout -PCBs @ MDT

G. Bencivenni - LNF-INFN - RD51 Meeting - Aveiro, 14th Sept. 2016

GE1-1 µ-RWELL etching @ CERN

The final copper/Kapton etching done @ CERN

- \diamond **the** *etching on small DLC samples was perfect:* **after** 10 minutes the holes were around 50 microns.
- the *etching on the CMS µ-RWELL was not good*: during the kapton etching, the *copper started to delaminate after 2 min,* which means that copper adherence has been compromised:

 the ELTOS, by mistake, has "scratched" the surface (in a "sanding-machine", just after the MDT pressing) and the copper adhesion on the kapton has been damaged.

Rui is trying to solve the problem as follows:

- *i. mechanically polishing one of the PCB in order to remove the kapton and the pre-preg down to the metal strips level (recovering one PCB)*
- *ii. etching a spare DLCed kapton foil (not damaged by ELTOS – glued on a pre-preg support last June)*
- *iii. gluing the DLCed kapton foil on the recovered PCB (@ LNF by vacuum bag tech.)*

Towards detector industrialization (III) (LR scheme)

The µ-RWELL manufacturing steps

ELTOS or another Company able to work on both rigid and flex …

Industrialization of the HR scheme

The *HR scheme* requires for a *double kapton layer sandwich:*

 the **first** layer for the *amplification stage* and the *first resistive layer* the **second** layer for the *second resistive layer*

The *two resistive layers* must be connected one to each other by means a *pattern of through-vias (1 cm² pitch).*

The *second resistive layer* is *grounded* through the readout electrodes by means *conductive-vias (1 cm² pitch).*

The other component is the *readout board***,** a standard PCB.

The *industrialization* of such a version of µ-RWELL clearly requires for a *Company able to work on both flexible and rigid substrate (…)*

intrinsically spark protected

for large area, MPGD:

gas gain ∼**10⁴**

- **rate capability** ∼**1 MHz/cm² for m.i.p (***with HR scheme***)**
- **space resolution < 60µm**

Lot of work/R&D still in progress:

- o *large area (CMS, SHIP) with LR scheme (industrialization started)*
- o *HR scheme (LHCb) with double resistive layer (looking for industrial partner …)*

Summary & Outlook

The **µ-RWELL is a compact, simple to assemble & suitable**

large gain w/125µm thick WELL amplification stage (work in progress *w/Rui)*

SPARE SLIDES

G. Bencivenni - LNF-INFN - RD51 Meeting - Aveiro, 14th Sept. 2016

The two detector schemes (II)

() Morello's model: appendix A-B (G. Bencivenni et al., 2015_JINST_10_P02008)*

G. Bencivenni - LNF-INFN - RD51 Meeting - Aveiro, 14th Sept. 2016 27

GEMs: stability

The biggest enemy of MPGDs are the discharges \rightarrow **due to the fine structure** and the **typical micrometric distance between their electrodes**, the occasional occurrence of **heavily ionizing particles** may trigger **local breakdowns** that can eventually damage the detector and/or the related readout electronics

with multiple structures the discharge probability is strongly reduced **but not completely suppressed**

GEM detector currently running @ HEP

A damaged GEM sector could required for the replacing of a whole a detector gap !!

GEMs: the construction challenge

The construction of the GEM requires some assembly steps such as **the stretching of the 3 GEM foils,** with a quite **large mechanical tension** to cope with $\rightarrow \sim 1$ kg/cm. **Improvements in the GEM construction process** has been recently introduced by R. de Oliveira (NS2 detector assembly scheme): **no gluing, no soldering, no spacer in the active area → re-opening of the detector if repairs needed became possible.**

LHCb-LNF/Ca

Aveiro, 14th Sept. 2016

The µ-RWELL: a GEM-MM mixed solution

The **µ-RWELL** has features in common either with **GEMs** or **MMs:**

- **MMs** are realized on **rigid** substrate
- **GEM** on **flex** substrate
- **µ-RWELL** exploits both technologies, **rigid and flexible (**but also **full-flex)**

The **µ-RWELL** :

- inherits and improves the **GEM amplifying scheme** with the peculiarity of a "**well defined amplifying gap**", but ensuring **higher and more uniform gas gain,** with no transfer/induction gaps whose non-uniformity can affect the detector gain
- inherits the **MM resistive readout scheme** that allows a "**strong suppression**" of the amplitude of the **discharges.**

The μ -RWELL vs GEM (Garfield simulation)

GEM – Ar:CO2 70:30 gas mixture

Induced currents on group $*10$ ľΜ 0.2 50 ns $-\Omega$ -2.2
 -2.4
 -2.6
 -2.8 -3
 -3.2
 -3.4 -3.6 -3.8 x-Axis [cm]

LL – Ar:CO2 70:30 gas mixture

Signal from a single ionization electron in a GEM. The duration of the signal, about 20 ns, depends on the induction gap thickness, drift velocity and electric field in the gap.

Signal from a single ionization electron in a µ-RWELL.

The absence of the induction gap is responsible for the fast initial spike, about 200 ps, induced by the motion and fast collection of the electrons and followed by a $~50$ ns ion tail.

G. Bencivenni - LNF-INFN - RD51 Meeting -

Aveiro, 14th Sept. 2016

Discharges: µ-RWELL vs GEM

 the **µ-RWELL** detector reaches discharge amplitudes of **few tens of nA, <100 nA @ max gain**

 the **single-GEM** detector reaches discharge amplitudes of **≈ 1µA** *(of course the discharge rate is lower for a triple-GEM detector)*

More quantitative studies must be performed

G. Bencivenni - LNF-INFN - RD51 Meeting - Aveiro, 14th Sept. 2016

µ-RWELL: B≠0 with Ar/ISO=90/10

G. Bencivenni - LNF-INFN - RD51 Meeting - Aveiro, 14th Sept. 2016 34

µ-RWELL: tracking efficiency

CC analys

Ar/ISO=90/10 Ar/ISO=90/10

At **low resistivity the spread of the charge** (cluster size) on the readout strips **increases**, thus requiring a **higher gain** to reach the **full detector efficiency.**

MPGDs: stability

The **biggest "enemy"** of MPGDs are the **discharges.**

Due to the **fine structure** and the **typical micrometric distance of their electrodes**, MPGDs generally suffer from **spark occurrence** that can be **harmful for the detector and the related FEE.**

Technology improvement: resistive MPGD

For **MM**, the spark occurrence between the metallic mesh and the readout PCB has been overcome with the **implementation** of a **"resistive layer"** on top of the readout itself . The principle is the **same as the resistive electrode used in the RPCs: the transition from streamer to spark is strongly suppressed by a local voltage drop.**

by R.de Oliveira TE MPE CERN Workshop

The resistive layer is realized as resistive strips capacitive coupled with the copper readout strips. **voltage drop due to sparking**

MPGDs: the challenge of large area

A further **challenge for MPGDs** is the **large area:**

- **EX** the construction of a GEM requires some time-consuming (/complex) assembly steps such as:
	- the **stretching of the 3 GEM foils** (with quite **large mechanical tension** to cope with, \sim 1 kg/cm)
	- the **splicing of GEM foils** to realize large surfaces is a **demanding operation** introducing **not negligible dead zones (~3 mm)**. The width of the **raw material is limited to 50-60 cm**.
- similar considerations hold for **MM**:
	- \checkmark the **splicing of smaller PCBs is possible**, opening the way towards the large area covering (**dead zone of the order 0.3 – 0.5 mm**).
	- The **fine metallic mesh**, defining the amplification gap, is a "*floating component"* stretched on the cathode (**~**1 kg/cm) and **electrostatically attracted toward the PCB**
		- **Possible source of gain non-uniformity**

NS2(CERN): no gluing but still stretching …

Handling of a stretched mesh

The two detector schemes (II)

$$
\text{If } \rho_{s} = \rho_{s} \quad \Rightarrow \quad \Omega / \Omega' \sim d/2d' = 25
$$

Morello's model: appendix A-B (G. Bencivenni et al., 2015_ JulysT_o<u>10_</u> P02008) G. Bencivenni - LNF-INFN - RD51 Meeting -