

How charging up affects THGEM detectors gain

P. M. M. Correia,

C. D. R. Azevedo, C. A. B. Oliveira, F. A. Pereira, A.L.M. Silva, R. Veenhof, and J. F. C. A. Veloso University of Aveiro, CERN RD51 pmcorreia@ua.pt

Outline

- Charging-up calculations
	- Recent developments
	- $-$ Discussion of a possible Garfield++ new class
	- Application to the Thick-GEM:
		- Gain evolution over time
		- RIM influnce
		- Discharge
- Conclusions

Charging-up calculation

- Iterative-based calculation
- Calculation of field maps require several FFM calls
- Previous calculation studies were made:
	- M. Alfonsi et al, NIMA 671 (2012) 6-9
	- P M M Correia et al, 2014 JINST 9 P07025
- Only static method will be discussed for simplicity

Principle of superposition

- The need of several executions of FEM is tedious
- Solution: Calculate Potential field map + Charged field maps at the beginning of the simulation
- Garfield++ reads potentials as a list of **nodes** and **E. Potential**
- For each node, the new **E. Potential** for each iterations is calculated inside Garfield++!

 $V(char ged, i) = V(uncharged, i) \pm N \times V(accum. charges)$

Principle of superposition

- Ex: Thick-GEM, insulator with 20 slices
- For each voltage between electrodes, field map is calculated as usually (without charging-up)
- For each slice, the field map correspondent to 1 electron accumulated on the correspondent slice surface is calculated
- 22 field maps due to charges $+1$ (at least) potential field map are needed for full simulation

PRNSOL_700V.lis PRNSOL_750V.lis PRNSOL_800V.lis PRNSOL_900V.lis PRNSOL_slice10.lis PRNSOL_slice11.lis PRNSOL_slice12.lis PRNSOL_slice13.lis PRNSOL_slice14.lis PRNSOL_slice15.lis PRNSOL_slice16.lis PRNSOL_slice17.lis PRNSOL_slice18.lis PRNSOL_slice19.lis PRNSOL_slice1.lis PRNSOL_slice20.lis PRNSOL_slice2.lis PRNSOL_slice3.lis PRNSOL_slice4.lis PRNSOL_slice5.lis PRNSOL_slice6.lis PRNSOL_slice7.lis PRNSOL_slice8.lis PRNSOL_slice9.lis PRNSOL_sliceRimBottom.lis PRNSOL_sliceRimTop.lis

Garfield++ Method

- A new Garfield++ class has been developed (~500 lines of code, up to now).
- Responsible to find the field maps (only **ANSYS** at the moment)
- Writes a temporary field map depending on the number of accumulated charges for each iteration
- It allows restart simulation at a specific iteration if previous field maps are stored
- (code for demonstration only)

int **main**(int argc, char * argv[]) { double ChargesVector[nSlices];

$1/(...);$

ChargingUpAnsys file(mapfilesdir, nSlices, ChargesVector, gasstr, vgem, npe); if (!file.checkSlicesFieldMaps()){ std::cout<<"Error 1, files does not exist"<<endl; $exit(0);$

file.loadSlicesFieldMaps();

double simulatedCharges[nSlices];

//for loop over iterations // (...) after avalanches calculation and calculation of the V/ number of accumulated electrons+ions

file.UpdateFieldMap(simulatedCharges); file.SaveKaptonChargesFile(iter); file.printCurrentCharges(); //end of the for loop

Simulation setup

- Pitch 0.7mm, thick 0.4 mm, hole diam 0.3mm
- Variable RIM width -> 0.01mm to 0.1 mm
- Drift field 0.5 kV/cm
- Induction field 2.0 kV/cm
- \bullet V_{THGFM} 500 V
- Ne/CH4(5%), penning factor of 0.4
- Standard room conditions for temperature (293 K) and pressure (760 Torr)
- Primary electrons start drifting at the drift plane
- Two different iteration steps were used to mimic different irradiation reates: **1x105 (small step)** and **5x105 (large step)** e.p. per primary cell per iteration.

Small step

- Small step: 1x10⁵ primary avalanches/mm2 was used to mimic lower irradiation rate
- Fast decrease followed by a plateau or a slow increase
- Gain after stabilization is (almost) always lower than initial gain
- RIM size determines the gain decrease

Large step

- Large step: **5x10⁵** primary avalanches/mm2 to mimic higher irradiation rate
- **Very fast decrease** (almost impossible to notice) followed by an exponential-like increase
- Depending on the **RIM** the gain after stabilization can be higher or lower than the first simulated point **– but is always higher than the initial gain if the exponential fit negletsthe first point**
- Different exponential constants are found forsmall and large steps

Constant decays

- Two different exponential constants were found
- **RIM** seems to not affect these exponential constants
- However, depending on **RIM** the gain after stabilization can be higher or lower than the initial value

Discharge simulation

- During simulations, discharge-like events appears at random
- It happens when an unusual large amount of charges accumulates in the insulator regions of the hole
- Can charging-up explain these micro-discharges?

Conclusions

- Charging-up gain calculations are now performed completely inside Garfield++:
	- $-$ A **new class** has been written, only needs the **initial field maps** corresponding of each insulator slice
	- $-$ No need to call FEM software after each iteration -> **time and memory saving**
	- $-$ Results coherent with previous simulations. Short-time gain evolution as described by experimental work.
- Application to THGEM:
	- $-$ Two different regimes were found in the simulations
	- $-$ RIM size determines whether the gain after stabilization is lower or higher than initial gain
	- $-$ Micro discharges appears during simulations, **charging-up** might explain these