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Outline
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• Discharge
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Charging-up	calculation

• Iterative-based	calculation

• Calculation	of	field	maps	require	
several	FEM	calls

• Previous	calculation	studies	were	
made:
• M.	Alfonsi	et	al,	NIMA	671	(2012)	6–9
• P	M	M	Correia	et	al,	2014	JINST	9	

P07025

• Only	static	method	will	be	discussed	
for	simplicity
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Principle	of	superposition

• The	need	of	several	executions	of	FEM	is	tedious
• Solution:	Calculate	Potential	field	map	+	Charged	field	maps	at	the	beginning	of	the	simulation
• Garfield++	 reads	potentials	as	a	list	of	nodes and	E.	Potential
• For	each	node,	the	new	E.	Potential for	each	iterations	 is	calculated	 inside	Garfield++!
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• Ex:	Thick-GEM,	 insulator	with	20	
slices

• For	each	voltage	between	
electrodes,	 field	map	is	calculated	
as	usually	(without	charging-up)

• For	each	slice,	 the	field	map	
correspondent	to	1	electron	
accumulated	on	the	
correspondent	slice	 surface	is	
calculated

• 22	field	maps	due	to	charges	+	1	
(at	least)	potential	 field	map	are	
needed	 for	full	simulation
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Garfield++	Method

• A new Garfield++ class has been
developed (~500 lines of code, up to
now).

• Responsible to f ind the field maps (only
ANSYS at the moment)

• Writes a temporary field map depending
on the number of accumulated charges
for each iteration

• It allows restart simulation at a specific
iteration if previous field maps are
stored

• (code for demonstration only)
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• Pitch 0.7mm, thick 0.4 mm, hole diam 0.3mm
• Variable RIM width -> 0.01mm to 0.1 mm
• Drift field 0.5 kV/cm
• Induction field 2.0 kV/cm
• VTHGEM 500V
• Ne/CH4(5%), penning factor of 0.4
• Standard room conditions for temperature

(293 K) and pressure (760 Torr)
• Primary electrons start drifting at the drift

plane
• Two different iteration steps were used to

mimic different irradiation reates: 1x105
(small step) and 5x105 (large step) e.p. per
primary cell per iteration.
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Small	step

• Small step: 1x105 primary
avalanches/mm2 was used to
mimic lower irradiation rate

• Fast decrease followed by a
plateau or a slow increase

• Gain after stabilization is
(almost) always lower than
initial gain

• RIM size determines the gain
decrease
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Large	step
• Large step: 5x105 primary

avalanches/mm2 to mimic higher
irradiation rate

• Very fast decrease (almost
impossible to notice) followed by
an exponential-like increase

• Depending on the RIM the gain
after stabilization can be higher or
lower than the first simulated
point – but is always higher than
the initial gain if the exponential
fit neglets the first point

• Different exponential constants
are found for small and large steps
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• Two different exponential
constants were found

• RIM seems to not affect
these exponential
constants

• However, depending on
RIM the gain after
stabilization can be higher
or lower than the initial
value
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Discharge	simulation
• During	simulations,	discharge-like	events	appears	at	random

• It	happens	when	an	unusual	large	amount	of	charges	accumulates	in	the	 insulator	regions	of	the	
hole

• Can	charging-up	explain	these	micro-discharges?
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Conclusions
• Charging-up	gain	calculations	are	now	performed	completely	inside	Garfield++:

– A	new	class has	been	written,	only	needs	the	initial	field	maps corresponding	of	
each	insulator	slice

– No	need	to	call	FEM	software	after	each	iteration	->	time	and	memory	saving
– Results	coherent	with	previous	simulations.		Short-time	gain	evolution	as	

described	by	experimental	work.	

• Application	to	THGEM:

– Two	different	regimes	were	found	in	the	simulations
– RIM	size	determines	whether	the	gain	after	stabilization	is	lower	or	higher	than	

initial	gain
– Micro	discharges	appears	during	simulations,	charging-up might	explain	these
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