

Task 5: High-Tc superconducting link Summary of work-package

Amalia Ballarino (CERN)

24th February 2009

Amalia Ballarino, CERN 1

Work-package description

Use of HTS technology in superconducting long-distance quasi-dc buses providing the electrical link between power converters and superconducting magnet systems and/or between cold magnets.

Advantage with respect to existing Nb-Ti buses:

 \succ gain in temperature margin, with more relaxed requirements for the cryogenic system;

>capacity of absorbing additional transient heat loads (e.g. due to radiation losses);

➤ simplified cold-powering system, with possibility of removing the cryogenic feedboxes and related equipment (current leads, control valves, level gauges,...) to a radiation free area.

Such an HTS multiple circuits He gas-cooled bus, electrically insulated at 1 kV-2 kV and carrying quasi dc currents, does NOT exists yet.

Participants

- CERN (A. Ballarino)
- Columbus (S. Berta, G. Grasso)
- > DESY (W. Zeuner)
- ➢ BHTS (A. Aubele, B. Sailer)
- University of Southampton (Y. Yang)

Work-package Sub-Tasks

Sub-Task 1: Development and characterization of conductors <u>suitable</u> for application to He gas cooled HTS links.

Conductors analyzed: MgB₂, Bi-2212, Bi-2223, and YBCO 2nd generation material.

Temperature range of operation: between 4.2 K and 77 K.

Electrical and mechanical properties;

How to characterize long lengths at temperatures below 50 K?

Goal: qualification of conductors on the basis of electrical, thermal and mechanical properties as needed for application to a superconducting bus-system. Selection of the most promising conductors.

Deliverable: material properties and characterization processes.

Work-package Sub-Tasks

Sub-Task 2: Design and test of electrical contacts.

Goal: Qualification of electrical joints for interconnection in a superconducting magnet system (HTS/HTS,HTS/Cu, HTS/LTS).

Deliverable: Procedures for making low-resistance joints.

Work-package Sub-Tasks

Sub-Task 3: Design of a long-length HTS multi-circuit bus.

Development of electrical insulation of architecture suitable for a quasi-dc 1 kV range HTS cable operating in He gas.

Study of stability and quench propagation in HTS conductor, and study of quench protection of HTS bus.

Goal: Design of a multi-conductors link of the type needed for application to accelerators (e.g. 26 circuits 600 A).

Deliverable: Short length (few meters) of cable assembly.

Global plan

It needs to be discussed among participants. In particular, spending profiles, and activities and responsibilities of participants will be agreed between now and 1st of April 2009.

Proposed plan and activities distribution:

➤ Starting date: 1st September 2009.

➢ Sub-task 1 and sub-task 2 (conductors qualification and selection, joints qualification) : 2009-2011.

Sub-task 3 (stability and quench protection, cable assembly): 2011-2013.

A detailed plan will be ready by September 2009.