

Task 6: Short period helical superconducting undulator Status of Organisation and Planning

Jim Clarke HFM Collaboration Meeting Feb 24th 2009

Institutes

- \cdot STFC
 - Daresbury Laboratory (DL)
 - Rutherford Appleton Laboratory (RAL)

Participants

- · Jim Clarke (DL) Task Coordinator
- · Duncan Scott (DL) Modelling
- Tom Bradshaw (RAL) Local Coordinator
- Steve Carr (RAL) Mechanical design
- · Jim Rochford (RAL) Design and testing

Motivation

- The ILC requires unprecedented numbers of positrons when compared with present day sources
- If the positrons can be polarised then the physics reach of the collider can be enhanced
- ILC Baseline Synchrotron radiation from an undulator
 - Very high energy electrons
 - Short period undulator
 - Lots of Periods for high intensity
 - Helical undulator
 → circularly polarised photons

Undulator

- To generate the photons with a high enough energy (>10MeV) need to use short period & high field
- $\cdot\,$ For sufficient positrons undulator must be ~200m
- Short period, high field, only possible with narrow aperture:
 - Resistive wall effects
 - Vessel surface roughness effects
 - Synchrotron radiation power problems
 - Generating a vacuum with difficult aspect ratio
 - Mechanical tolerances
 - Manufacturing issues
- Superconducting technology solution chosen after 'competition' with permanent magnet

Existing Studies

- Team has been working on superconducting helical undulator development for ILC since 2004 (Supported by STFC & EUROTeV)
- Exclusively NbTi so far
- Several short prototypes have been constructed and tested
- Following this R & D phase a full scale module has been designed and constructed

Prototypes

Bmod (T)

Summary Table

	I	Ш	III	IV	V
Former material	Al	Al	Al	Iron	Iron
Period, mm	14	14	12	12	11.5
Groove shape	rectangular	trapezoidal	trapezoidal	trapezoidal	rectangular
Winding bore, mm	6	6	6.35	6.35	6.35
Vac bore, mm	4	4	4	4.5 (St Steel tube)	5.23* (Cu tube)
Winding	8-wire ribbon, 8 layers	9-wire ribbon, 8 layers	7-wire ribbon, 8 layers	7-wire ribbon, 8 layers	7-wire ribbon, 8 layers
Sc wire	Cu:Sc 1.35:1	Cu:Sc 1.35:1	Cu:Sc 1.35:1	Cu:Sc 1.35:1	Cu:Sc 0.9:1

Prototypes Summary

Cryomodule

 A 4m module containing 2 x
1.75m helical undulators has now been constructed and is being commissioned

Other Applications

 STFC has taken advantage of this expertise by separately funding the same group to develop superconducting undulators suitable for light sources such as DIAMOND or future FEL facilities.

Draft Work Plan

- · Year 1: Design study with Nb3Sn
 - Geometry selection
 - Wire selection
 - Ribbon or wire?
 - Minimum winding radius?
- Year 1: Familiarisation of working with Nb3Sn
 - Simple winding tests
 - Heat treatment tests
 - Insulation tests
 - Minimum winding radius?

Draft Work Plan

- Year 2: Construction of prototype 1
 - Magnet Measurements
 - Confirmation of modelling
- · Year 3: Iterate design
 - Minimise magnet period
 - Maximise field
- Year 4: Construction of prototype 2
 - Magnet Measurements
 - Confirmation of modelling
 - Direct comparison with NbTi?

Draft Milestones

- M6 Wire selection & procurement
- M9 Initial winding & activation tests
- M12 Design study complete
- M21 Prototype 1 complete
- M24 Measurements of P1 complete
- M30 Design iterated
- M39 Prototype 2 complete
- M42 Measurements of P2 complete

Resource Profile

- A relatively flat resource profile is envisaged over the 4 years
- No detailed project plan exists yet

Collaborations

- We would welcome any others who would like to join in with our efforts
- We are unfamiliar with Nb3Sn and would welcome any advice and assistance