

Heavy Scintillating Crystal Fibers for calorimetry

E. Auffray, P. Lecoq, CERN, Geneva

November 2008

- New technologies in the production of heavy scintillators open interesting perspectives for calorimetry in future colliders :
 - Design flexibility: detector granularity
 - Functionality: extract more information than simple energy deposit
- The concept of this proposal is based on metamaterials with dual/triple readout capability
 - Scintillating cables made of heavy scintillating fibers of different composition ⇒ quasi-homogeneous calorimeter
 - Fiber arrangement in such a way as to obtain 3D imaging capability
 - Fiber composition to access the different components of the shower

Concept of meta-cable

- Select a non-intrinsic scintillating material (unlike BGO or PWO) with high bandgap for low UV absorption
- The undoped host will behave as an efficient Cerenkov: heavy material, high refraction index n, high UV transmission
- Cerium or Praesodinum doped host will act as an efficient and fast scintillator
 - ≈ 40 ns decay for Ce
 - ≈ 20 ns decay for Pr
- If needed fibers from neutron sensitive materials can be added:
 - Li Tetraborate: Li₂B₄O₆
 - LiCaF: LiCaAlF₆
 - elpasolite family (Li or B halide of Rb, Sc and rare earth)
- All fibers can be twisted in a cable behaving as a pseudo-homogeneous active absorber with good position and energy resolution and particle identification capability
- Readout on both sides by SiPMT's

February2009

February2009

Lutetium Aluminum Garnet LuAG (Lu₃Al₅O₁₂)

Physico-chemical properties

Structure / Space group		Cubic / Ia3d
Density (g/cm ³)	<u></u>	6.73
Zeff	<u></u>	62.9
Radiation length X_0 (cm)	<u></u>	1.41
Interaction length (cm)	•••	23.3 LuAP: 19.8 Fe: 17
Hardness (Mohs)		7.5 PWO: 3 BGO, glass: 5
Fracture toughness (Mpa.m ^{1/2})		1.1
Cleavage plane / H ₂ O solubility		No / No
Melting point (°C)		2260
Thermal expansion @ RT (°K ⁻¹)		8.8 10 ⁻⁶
Thermal conductivity @ RT (W/m°K)		31

Optical properties

d(LY)/dT?Emission wavelength (nm): Ce doped535 290, 350Pr535 290, 350dopedPrDecay time (ns): Ce doped Pr doped70 20Refractive index @ 633nm (isotropic) n²= 3.3275151 - 0.0149248 λ²1.842 Quartz: 1.55Fundamental absorption undoped (nm)250Max. Cerenkov 1/2 angle57°Total reflexion 1/2 angle33°Cerenkov threshold e energy (KeV)97	Light yield: Ce or Pr doped (ph/MeV)	20'000 1/2 Nal(Tl)
Emission wavelength (nm): Ce dopedS35 535 290, 350dopedPr535 290, 350Decay time (ns): Ce doped Pr doped70 20Refractive index @ 633nm 	d(LY)/dT	?
Decay time (ns): Ce doped Pr doped70 20Refractive index @ 633nm (isotropic) n²= 3.3275151 - 0.0149248 λ²1.842 Quartz: 1.55Fundamental absorption undoped (nm)250Max. Cerenkov 1/2 angle57°Total reflexion 1/2 angle33°Cerenkov threshold e energy (KeV)97	Emission wavelength (nm): Ce doped Pr doped	535 290, 350
Refractive index @ 633nm (isotropic) n²= 3.3275151 - 0.0149248 λ²1.842 Quartz: 1.55Fundamental absorption undoped (nm)250Max. Cerenkov 1/2 angle57°Total reflexion 1/2 angle33°Cerenkov threshold e energy (KeV)97	Decay time (ns): Ce doped Pr doped	70 20
Fundamental absorption undoped (nm)250Max. Cerenkov 1/2 angle57°Total reflexion 1/2 angle33°Cerenkov threshold e energy (KeV)97	Refractive index @ 633nm (isotropic) n^2 = 3.3275151 - 0.0149248 λ^2	1.842 Quartz: 1.55
Max. Cerenkov 1/2 angle57°Total reflexion 1/2 angle33°Cerenkov threshold e energy (KeV)97	Fundamental absorption undoped (nm)	250
Total reflexion 1/2 angle33°Cerenkov threshold e energy (KeV)97	Max. Cerenkov 1/2 angle	57°
Cerenkov threshold e energy (KeV) 97	Total reflexion 1/2 angle	33°
	Cerenkov threshold e energy (KeV)	97

Status of the development

 Optical characterisation (Attenuation, Light Yield, Decay time)

•Test readout with SiPMT and diffractive optics

•Material optimisation in Collaboration with Company

 Preparation of new test beam for 2009 with bigger cable (size comparable to a CMS PWO crystal (2x2x23cm)

•Simulation studies to determine and optimise the detector geometry and granularity needed for a precise determination of the electromagnetic fraction of the energy deposition in jets both at SHLC in the forward region and at CLIC energies.