

Dual readout calorimetry

general introduction and implications for CLIC

Lucie Linssen

Why calorimetry?

Measurement of individual charged and neutral particles
Measurement of jets, mass reconstruction with jets
Measurement of energy flow within an event
Transverse energy E_t, missing E_t

Important calorimetry features

Energy resolution

•Position resolution (position and angle)

•Time resolution

- •Particle Identification capability
- •Signal linearity, reliable calibration, gaussian signal distribution

EM-shower, **HAD-shower** in a snapshot

Electromagnetic shower (EM):

Particles in shower: electrons, photons Processes: bremsstrahlung, pair production Shower depth: ~ 23 X_0 (100 GeV) Shower width: ~ 5 ρ_M

Hadronic shower component (HAD):

Particles in shower: all types, including slow neutrons Processes: particle processes (em, hadronic), nuclear processes Shower depth: ~ 7-9 Λ_{int} Shower width: ~ 1.5-2 Λ_{int}

ILC calorimetry requirements

Requirements for ILC calorimetry are dominated by:

•High-precision jet reconstruction (mass reconstruction with jets)

•Mass reconstruction with leptons (incl. neutrinos)

•Good π^0 reconstruction (including 2γ vertexing)

Energy resolutions required (for ILC, with similar values for CLIC):

Electrons, photons: typically $\sigma_E / E = 15\% / \sqrt{E}$ quoted

Single Hadrons: $\sigma_E / E = 60\% / \sqrt{E} \leftarrow$ actually, momentum resolution will be used instead

Jets: $\sigma_{F}/E = 30\%/\sqrt{E}$ (below 100 GeV), $\sigma_{F}/E = 3-4\%$ (above 100 GeV)

(with $\sigma_E/E = 60\%/\sqrt{E} = \sigma_E/E = 30\%/\sqrt{E}$ giving factor 1/1.4 in luminosity for some crucial processes)

ILC jets go up to up to ~250 GeV in energy, CLIC jets up to ~700 GeV

Composition of ILC calorimeters (PFA based)

SiD concept

HCAL

 $\begin{aligned} \mathsf{R}_{\mathsf{min}} &= 141 \text{ cm}, \ \mathsf{R}_{\mathsf{max}} = 253 \text{ cm} \\ &40 \text{ layers of Steel/Gas} (2.0 \text{ cm} + 0.8 \text{ cm}) \\ &\lambda &= 5.1 \text{ , } X_0 = 46.5 \\ &\text{segmentation: } 1.0 \text{ cm x } 1.0 \text{ cm} \end{aligned}$

ECAL

20 layers 2.5 mm Tungsten + 10 layers 5 mm Tungsten 30 gaps, 1.25 mm, Silicon pixel $\lambda = 1$, X₀ = 29 Moliere radius 13 mm

ILD concept

HCAL

 $R_{min} = 206 \text{ cm}, R_{max} = 333 \text{ cm}$ 48 layers of Steel/Scint (2.0 cm + 0.5 cm) $\lambda = 6.0, X_0 = 55.3$ segmentation: 3.0 cm x 3.0 cm

ECAL

20 layers Tungsten of 0.6 X_0 + 20 layers Tungsten of 1.2 X_0 + Active material: Silicon or scintillator X_0 = 23 Cell sizes 5*5 mm²

What is different for CLIC calorimetry (1)?

At CLIC particle/jet energies are higher than at ILC:

- -- Need for a deep HCAL (7 Λ_i to 9 Λ_i , tbc)
- -- Cannot increase coil radius too much => need heavy absorber

-- At higher energy jets are more compact => additional difficulty to separate particles within the jet

3 TeV e⁺e⁻ event on SiD detector layout, illustrating the need for deeper calorimetry

What is different for CLIC calorimetry (2)?

Therefore:

--- Overlapping background events can become a problem

--- Requires use of fast-responding detectors (e.g. no slow scintillation process)

--- Detecting slow neutron shower components (with ~20 nsec decay lifetimes) may not be suitable (tbc)

Lead/Sci 4GeV pi-

Choice of materials and timing

Pb: Λi=17.1 cm, Xo=5.6 mm

(d)

(a)

Courtesy, GLD concept

e/h response ratio

The response of most calorimeters depends on the type of particle in the shower

Example: CMS calorimetry ECAL e/h=2.4, HCAL, e/h=1.3

Lucie Linssen, Dual readout meeting 18/02/2009

The Particle Flow Paradigm

- ★ In a typical jet :
 - 60 % of jet energy in charged hadrons
 - + 30 % in photons (mainly from $\pi^0 o \gamma\gamma$)
 - + 10 % in neutral hadrons (mainly $n \mbox{ and } K_L$)
- * Traditional calorimetric approach:
 - Measure all components of jet energy in ECAL/HCAL !
 - * ~70 % of energy measured in HCAL: $\sigma_E/E \approx 60 \,\%/\sqrt{E(GeV)}$
 - Intrinsically "poor" HCAL resolution limits jet energy resolution

- ***** Particle Flow Calorimetry paradigm:
 - charged particles measured in tracker (essentially perfectly)
 - Photons in ECAL: $\sigma_E/E < 20\%/\sqrt{E(GeV)}$
 - Neutral hadrons (ONLY) in HCAL
 - Only 10 % of jet energy from HCAL ⇒ much improved resolution

Mark Thomson

PFA for high-energy jets

Mark Thomson CLIC08 ILD detector description

*****Traditional calorimetry σ_E

$$\sigma_E/E \approx 60\%/\sqrt{E/{
m GeV}}$$

- Does not degrade significantly with energy (but leakage will be important at CLIC)
- Particle flow gives much better performance at "low" energies
 very promising for ILC

What about at CLiC ?

 PFA perf. degrades with energy
 For 500 GeV jets, current alg. and ILD concept:

 $\sigma_E/E \approx 85\%/\sqrt{E/\text{GeV}}$

Crank up field, HCAL depth...

 $\sigma_E/E \approx 65\%/\sqrt{E/\text{GeV}}$

rms90	PandoraPFA v03-β		
E _{JET}	σ _E /E = <mark>α</mark> /√E _{jj} cosθ <0.7	σ _E /E _j	
45 GeV	23.8 %	3.5 %	
100 GeV	29.1 %	2.9 %	
180 GeV	37.7 %	2.8 %	
250 GeV	45.6 %	2.9 %	
500 GeV	84.1 %	3.7 %	
500 GeV	64.3 %	3.0 %	+

 Algorithm not tuned for very high energy jets, so can probably do significantly better 63 layer HCAL (8 λ_l) B = 5.0 Tesla

Conclude: for 500 GeV jets, PFA reconstruction not ruled out

Triple

Dual (triple) readout method

Basic principle:

- •Measure EM shower component separately
- •Measure HAD shower component separately
- Measure Slow Neutron component separately

EM-part=> electrons => highly relativistic => Cerenkov light emission

HAD-part=> "less" relativistic => Scintillation signal

Slow neutrons => late fraction of the Scintillation signal

Dual

- Some characteristics of the DREAM detector
 - Depth 200 cm (10.0 λ_{int})
 - Effective radius 16.2 cm (0.81 λ_{int} , 8.0 ρ_M)
 - Mass instrumented volume 1030 kg
 - Number of fibers 35910, diameter 0.8 mm, total length \approx 90 km
- Hexagonal towers (19), each read out by 2 PMTs

Lucie Li

Application of dual read-out method

Richard Wigmans

Dual readout method

DREAM data: 200 GeV π^- energy response

Data NIM A537 (2005) 537. Lucie Linssen, Dual readout meeting 18/02/2009

Triple => Neutron component of the shower

Richard Wigmans

ILC calorimetry techniques

Dual readout calorimetry research projects world-wide (incomplete and also overlapping)

•DREAM collaboration (R.Wigmans et al.)

•Dual readout beam tests, materials studies

•4th concept (J. Hauptmann, C. Gatto et al.)

•EMsection + HCAL section of full concept, mainly simulation studies

•Fermilab (A. Para et al.)

•Crystals, light detection (SiPM), concept study

•CalTech (R-Y. Zu)

•Properties of crystals

•CERN (P. Lecoq, E. Auffray-Hillemans)

•Properties of: crystals, crystal fibres, metafibres

•

The 4th Concept HCAL

- Cu + scintillating fibers + Čerenkov fibers
- ~1.4° tower aperture angle
- ~ 7.3 λ_{int} depth
- Fully projective geometry
- Azimuth coverage down to ~2.8°
- Barrel: 16384 towers
- Endcaps: 7450 towers

November 18th, 2008

LCWSO8 V. Di Benedetto

Hadronic Calorimeter Towers

Conceptual Design of a High Resolution Calorimeter

- Six layers of 5 x 5 x 5 cm³ crystals (EM section): 108,000 crystals
- three embedded silicon pixel layers (e/γ position, direction)
- 9 layers of 10 x 10 x 10 cm³ crystals (hadronic section):
 60,000 crystals
- 4(8?) SiPM per crystal. Half of the photodectors are 5x5 mm and have a low pass edge optical filters (Cherenkov)
 - No visible dead space.
 - 500,000(1,000,000?) photodetectors
- Total volume of crystals ~ 80-100 m³.

Vito Di Benedetto, 20 Lecce, ILCRoot

Ren-Yuan Zhu, crystal measurements

Ratio of Cherenkov/Scintillation

1.6% for BGO and 22% for PWO with UG11/GG400 filter and R2059 PMT

Lucie Linssen, Dual readout meeting 18/02/2009

Conclusions

- Dual (triple) readout is a promising scheme
- Its application is possible thanks to recent technology advances:
 - Compact photon-detectors, compatible with strong magnetic fields (e.g. SiPM)
 - Development of crystals and fibres with high density
- First beam tests indicate:
 - Excellent jet resolution
 - Good linearity over a large range
- Groups are becoming active in the field world-wide. Activities:
 - Scintillation/Cherenkov materials studies
 - Photon detector studies
 - Simulations
 - Proof-of-principle beam tests

• What is missing?

 Work on a full engineering concept of a detector => convincing photon readout scheme, full hermetic and compact concept at a reasonable cost