


Heat load estimates for the Long Straight Sections of the HL-LHC

G. ladarola, E. Metral, G. Rumolo

Many thanks to:

G. Arduini, R. De Maria, P. Fessia, L. Medina, R. Tomas

HLLHC WP2 meeting 28/06/2016

- Introduction
- Evaluation method
- Organization of results and first observations
- Impact of bunch length increase to 1.3 ns

- Goal of the study is to provide a comprehensive survey of the expected heat loads on the beam screens of the LSS cold magnets (for all IRs)
- Considered the **two main contributions**:
 - **o** Electron cloud
 - Impedance

Synchrotron radiation <u>emitted</u> in the LSSs was found to be very small (see A. Rossi at HSS meeting 20/04/2016)

• Detailed evaluation performed for **all two-aperture magnets** while for the triplet assemblies we rely on previous work

HL-LHC beam screens CÉRN Naming convention used in the following 119.8 99.8 86.0 BSHL_Q1 BSHL_Q23 BSHL_D2 mm mm mm 86.0 mm 99.8 mm 119.8 mm 47.8 57.6 BSMB_1 BSMQ_Q1 mm mm 35.2 38.0 mm BSMQ_1 67.4 mm mm 72.8 BSHL_Q4 mm 45.2 mm 62 48.0 BSMB_2 BSMQ_2 mr mm 72.8 mm

57.8 mm

52.8 mm

- Introduction
- Evaluation method
- Organization of results and first observations
- Impact of bunch length increase to 1.3 ns

• Elias's recipe described in detail in:

https://indico.cern.ch/event/323863/

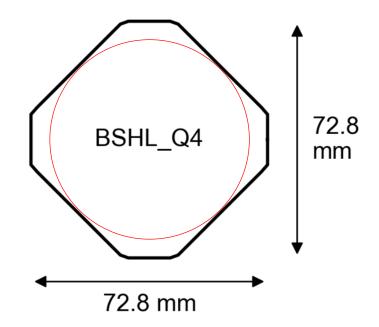
https://indico.cern.ch/event/323861/

• **Resistive wall formula** for circular one-layer pipe:

$$P_{loss/m}^{G,RW,1\,\text{layer}} = \frac{1}{2\pi R} \Gamma\left(\frac{3}{4}\right) \frac{M}{b} \left(\frac{N_b e}{2\pi}\right)^2 \sqrt{\frac{c \rho Z_0}{2}} \sigma_t^{-3/2}$$

where:

- (2 π R) is the LHC circumference
- Γ(3/4) is a constant (~1.23)
- M is the number of bunches
- b is the radius
- (N_be) is the bunch charge
- ρ is the resistivity of the pipe
- Z_0 is the impedance of free space (~377 Ω)
- σ_t is the r.m.s. bunch length (in time)

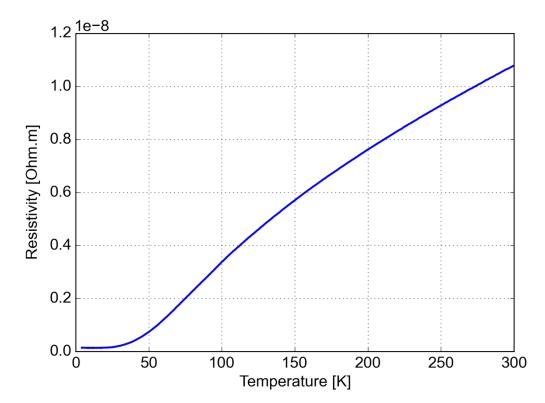


Elias's recipe described in detail in:

https://indico.cern.ch/event/323863/

https://indico.cern.ch/event/323861/

- **Resistive wall formula** for circular one-layer pipe:
 - Chosen radius of the largest inscribed circle



Elias's recipe described in detail in:

https://indico.cern.ch/event/323863/

https://indico.cern.ch/event/323861/

- **Resistive wall formula** for circular one-layer pipe:
 - Chosen radius of the largest inscribed circle
 - Resistivity at beam screen temperature from measurements (N. Kos)

• Elias's recipe described in detail in:

https://indico.cern.ch/event/323863/

https://indico.cern.ch/event/323861/

- **Resistive wall formula** for circular one-layer pipe:
 - Chosen radius of the largest inscribed circle
 - Resistivity at beam screen temperature from measurements (N. Kos)
 - Magneto-resistive effect given by Kohler's law: assumed 5 T for main dipoles (MBs), 150 T/m for main quadrupoles (MQs), 2 T for dipole correctors (MCBs)

$$\frac{\rho(B,T) - \rho_0(T)}{\rho_0(T)} = \frac{\Delta\rho}{\rho_0} = 10^{-2.69} \times (B \times RRR)^{1.055}$$

where RRR is the Residual Resistivity Ratio $RRR := rac{
ho(T\!=\!273\,\mathrm{K})}{
ho(T\!=\!4\,\mathrm{K})}$

Elias's recipe described in detail in:

https://indico.cern.ch/event/323863/

https://indico.cern.ch/event/323861/

- **Resistive wall formula** for circular one-layer pipe:
 - Chosen radius of the largest inscribed circle
 - Resistivity at beam screen **temperature** from measurements (N. Kos)
 - Magneto-resistive effect given by Kohler's law: assumed 5 T for main dipoles (MBs), 150 T/m for main quadrupoles (MQs), 2 T for dipole correctors (MCBs)
 - Effect of longitudinal weld (StSt) included with simple formula

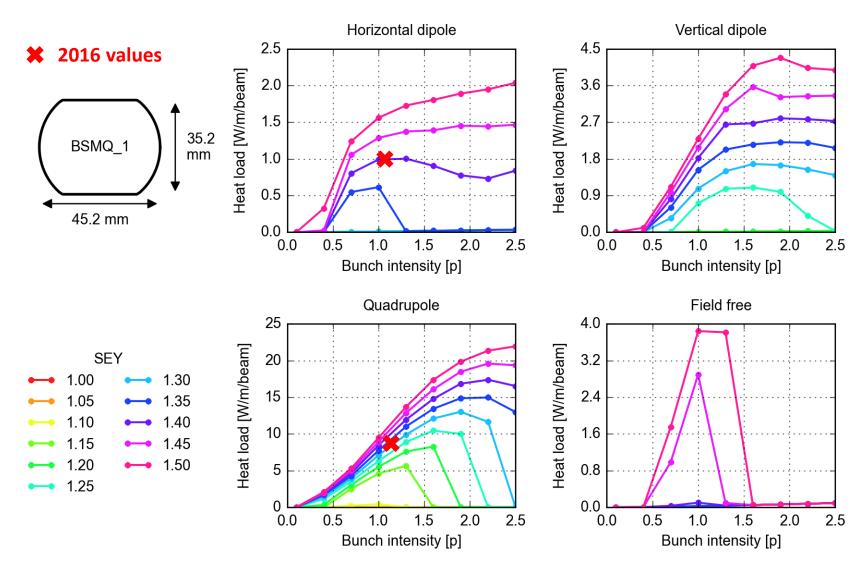
$$P_{loss/m}^{Weld} \approx P_{loss/m}^{G,RW,1\,\text{layer}} \times \sqrt{\frac{\rho_{SS}}{\rho_{Cu}}} \times \frac{\Delta^{Weld}}{2\,\pi\,b}$$

with ρ_{SS} = 6e-7 $\Omega m\,$ and $\,\Delta^{\text{Weld}}$ = 2 mm

For each chamber geometry, performed **PyECLOUD buildup simulations**

- Different values of **bunch intensity**
- Different values of **SEY**
- Four different different field configurations:
 - Horizontal dipole (1.5 T)
 - Vertical dipole (1.5 T)
 - Quadrupole (150 T/m)
 - Field free
- Beam paramters: Transverse beam size: 1 mm r.m.s., bunch length: 75 mm r.m.s., rescaled to 2748 bunches per beam

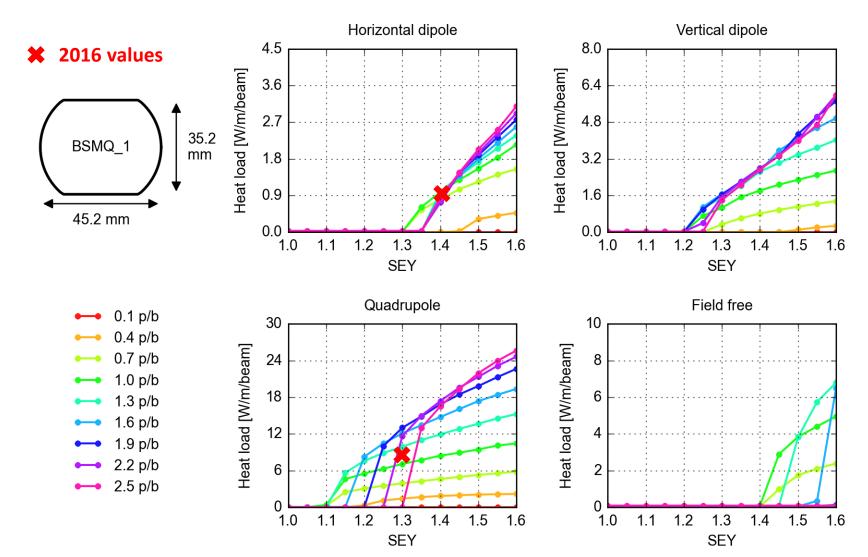
From 2015/16 experience, we assume that e-cloud saturation is reached after the first 30b. of each train


→ It makes a difference compared to past studies for SEY values close to the multipacting threshold

Heat load results from all (3240) simulations are available here

For each chamber generated this set of plots

CERN


 \rightarrow plots for all chambers available <u>here</u>

For each chamber generated this set of plots

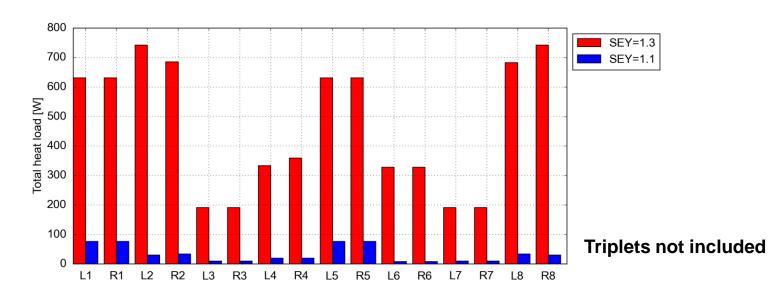
CERN

 \rightarrow plots for all chambers available <u>here</u>

- Introduction
- Evaluation method
- Organization of results and first observations
- Impact of bunch length increase to 1.3 ns

Procedure for heat load evaluation almost fully automatized:

- 1. Start with list of cryostats with lengths and included magnets (MBs, MQs, MCBs)
- 2. From MAD model:
 - 2.1 Identify the chamber geometry and orientation
 - 2.2 Identify **field configuration** from magnet name (MB*, MQ*, MCB*H*, MCB*V*)
- 3. For each cryostat, length not attributed to any magnets considered as **drift** (chamber assumed the same as for other elements in cryostat)
- 4. Compute **impedance heat load** (2.2e11 p/bunch, b.l. = 1.0 ns)
 - 4.1 Evaluate radius of inscribed circle
 - 4.2 Evaluate magnetic field at found radius
 - 4.3 Evaluate conductivity (depends on B and T)
 - 4.4 Apply resistive wall formula
 - 4.5 Correct for longitudinal weld
- Compute e-cloud heat load by interrogating simulations database (2.2e11 p/bunch, SEY=1.1/1.3)
- 6. Sum contributions for each **cryostat**
- 7. Sum contributions for each LSS


Generated a **table** for each LSS \rightarrow Full survey available <u>here</u>

Name	Length	Field	Chamber	Impedance	e-cloud	Total
		config.		(T_BS=20 K)	(SEY=1.3/1.1)	(SEY=1.3/1.1)
D2L1	13.2 m		BSHL_D2	3.6 W	227.0/46.3 W	230.6/49.9 W
MBRD.4L1.B1	7.8 m	dip	BSHL_D2	2.2 W	110.6 W/31.5 W	
MCBRDH.4L1.B1	1.8 m	dip	BSHL_D2	0.5 W	25.6 W/7.3 W	
MCBRDV.4L1.B1	1.8 m	dip	BSHL_D2	0.5 W	25.5 W/7.3 W	
Drifts	1.8 m	drift	BSHL_D2	0.4 W	65.3 W/0.2 W	
Q4L1	9.0 m		BSHL_Q4	3.1 W	155.1/12.8 W	158.2/15.9 W
MQYY.4L1.B1	3.8 m	quad	BSHL_Q4	1.4 W	107.5 W/0.1 W	
MCBYYH.4L1.B1	1.8 m	dip	BSHL_Q4	0.6 W	24.1 W/6.3 W	
MCBYYV.4L1.B1	1.8 m	dip	BSHL_Q4	0.6 W	23.3 W/6.2 W	
Drifts	1.6 m	drift	BSHL_Q4	0.5 W	0.2 W/0.2 W	
Q5L1	8.7 m		BSMQ_2	4.2 W	120.8/0.6 W	125.0/4.8 W
MQY.5L1.B1	3.4 m	quad	BSMQ_2	1.8 W	104.5 W/0.1 W	
MCBYV.A5L1.B1	0.9 m	dip	BSMQ_2	0.4 W	6.2 W/0.0 W	
MCBYH.5L1.B1	0.9 m	dip	BSMQ_2	0.4 W	3.6 W/0.0 W	
MCBYV.B5L1.B1	0.9 m	dip	BSMQ_2	0.4 W	6.2 W/0.0 W	
Drifts	2.6 m	drift	BSMQ_2	1.2 W	0.3 W/0.3 W	
Q6L1	6.9 m		BSMQ_1	5.3 W	112.2/0.4 W	117.4/5.7 W
MQML.6L1.B1	4.8 m	quad	BSMQ_1	3.7 W	111.9 W/0.2 W	
MCBCH.6L1.B1	0.9 m	dip	BSMQ_1	0.7 W	0.1 W/0.1 W	
Drifts	1.2 m	drift	BSMQ_1	0.8 W	0.2 W/0.2 W	
Total LSS						631.3/76.3 W

Dipole correctors and "drifts" can be nonnegligible w.r.t. total!

For SEY =1.3 e-cloud contribution is dominant

Surface treatment providing SEY=1.1 very effective in reducing the heat load

• For the **triplets** we can rescale the numbers obtained by Elias for the main magnets to the full triplets length (gives a pessimistic estimation) obtaining (for T=70 K and SEY =1.1)

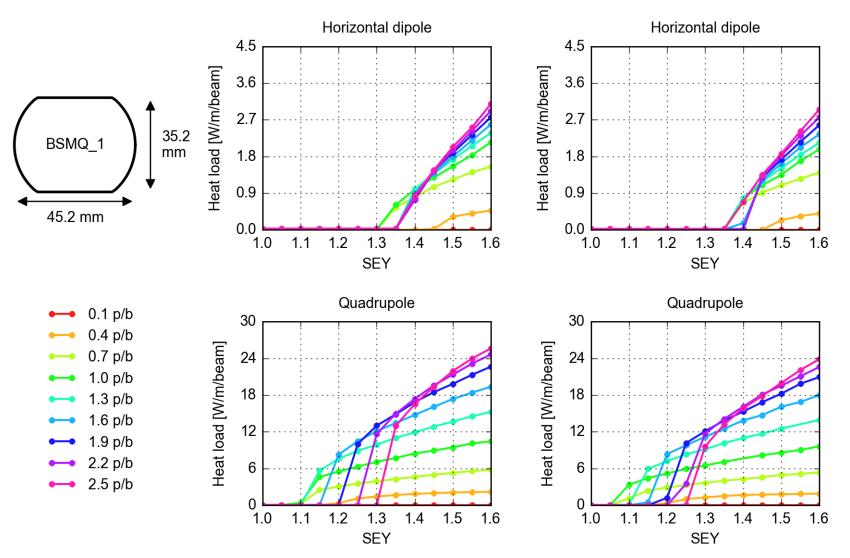
→ 275 W for ITs in IR1&5 and 204 W for ITs in IR2&8

- The experimental IRs are by far the most critical, with heat loads of ~1 kW per side (including ITs)
- From the arcs we expect heat loads of the order of 7.3 kW per arc (with no e-cloud in dipoles)
 - Total synchrotron radiation = 3 kW (70 W/hc)
 - Total impedance = 2.4 kW (50 W/hc)

ERN

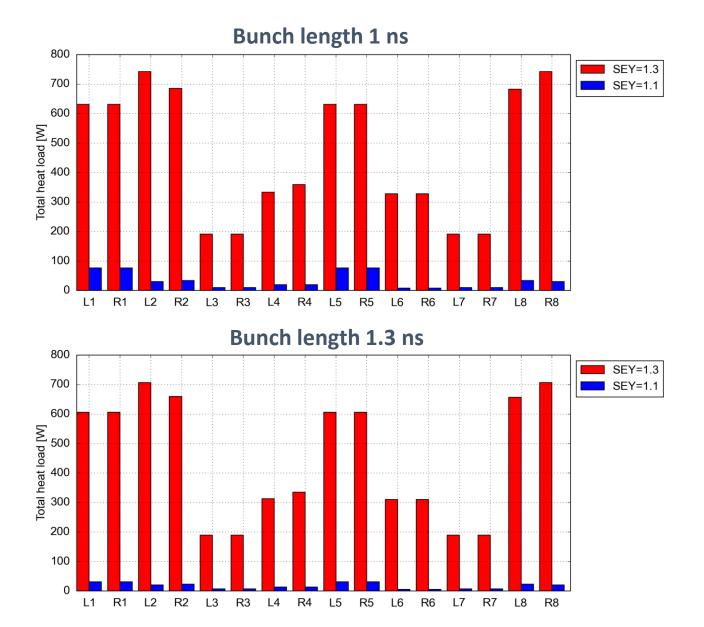
- Total **e-cloud in quads** (SEY 1.3) **= 1.9 kW** (42 W/hc)
- In S12, S23, S78 and S81 the total load goes beyond 8 kW
 - → <u>Very little marging for e-cloud in dipoles which WE WILL need to condition</u>

- Introduction
- Evaluation method
- Organization of results and first observations
- Impact of bunch length increase to 1.3 ns



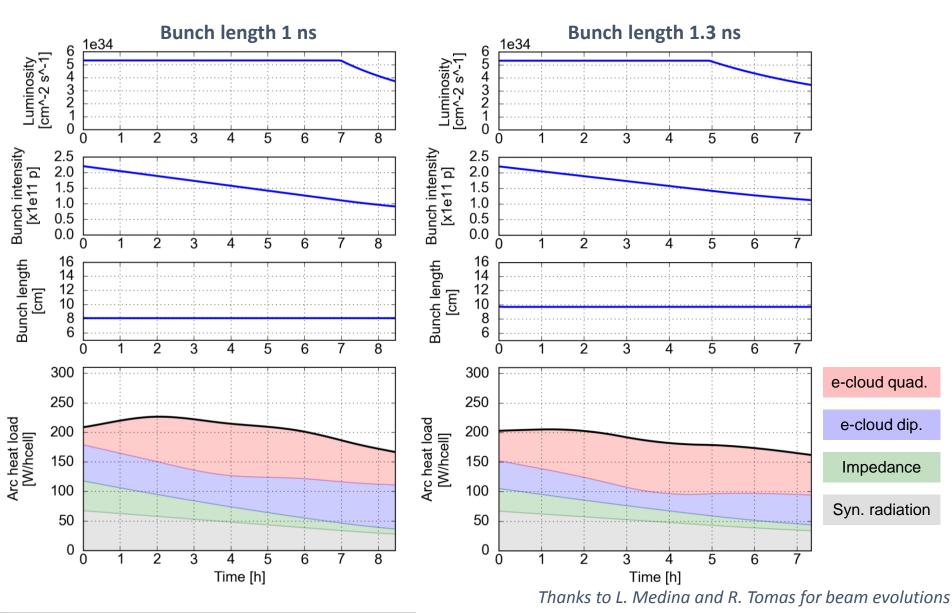
Impact of bunch length increase

Very small change (full set of results available here)


Bunch length 1 ns

Bunch length 1.3 ns

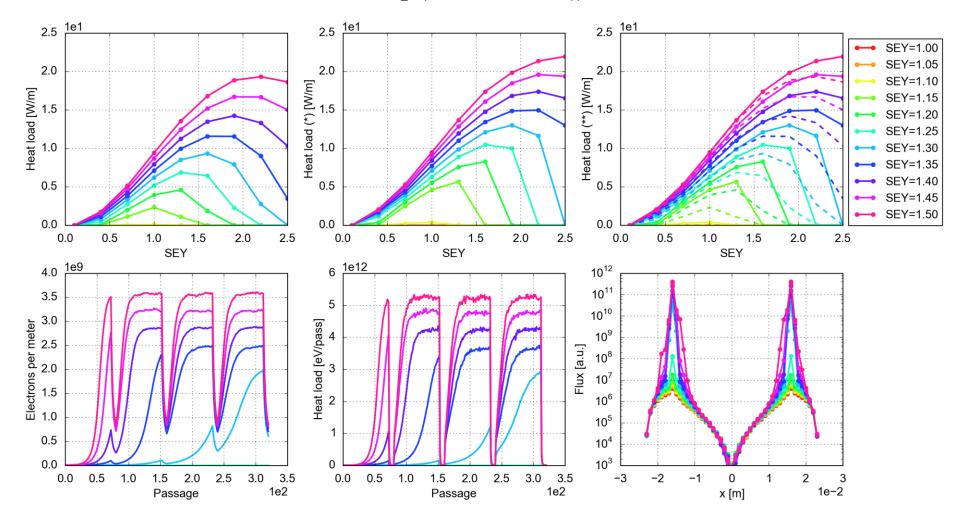
Very small change (due also to impedance contribution)

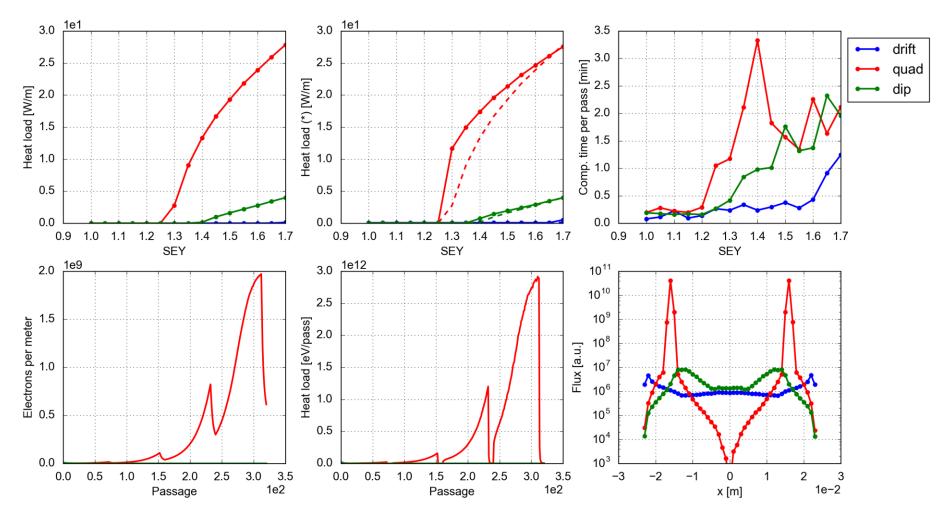


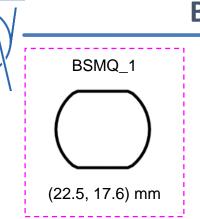
Heat load in the arcs: bunch length 1.0 ns vs 1.3 ns

Very small change

$$SEY_{dip} = SEY_{quad} = 1.40$$

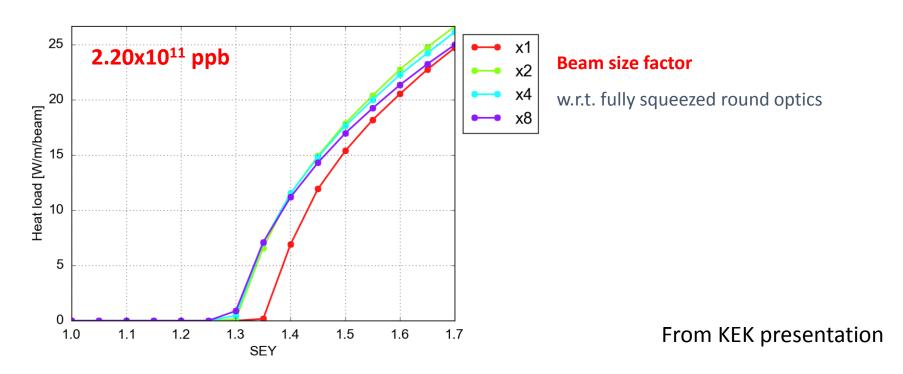



- Heat load from impedance and e-cloud has been estimated for all the 2-aperture magnets of the LHC Insertion Regions
- The obtained values will have **to be discussed together with the WP9** team in order to identify possible local limitations, to be mitigated with surface treatment of the beam screens
- The experimental IRs are by far the most critical, with heat loads of ~1 kW per side (including ITs)
 - From the arcs we expect heat loads of the order of 7.3 kW per arc (with no ecloud in dipoles)
 - In S12, S23, S78 and S81 the total load goes beyond 8 kW
 - → Very little marging for e-cloud in dipoles (which will be there after Long Shutdowns)
- The impact of a **bunch length** increase to 1.3 ns is **very small**


Thanks for your attention!

BSMQ_1, quad., for the details 2.20e11ppb

BSMQ_1, 2.20e11 ppb, for the details SEY=1.30

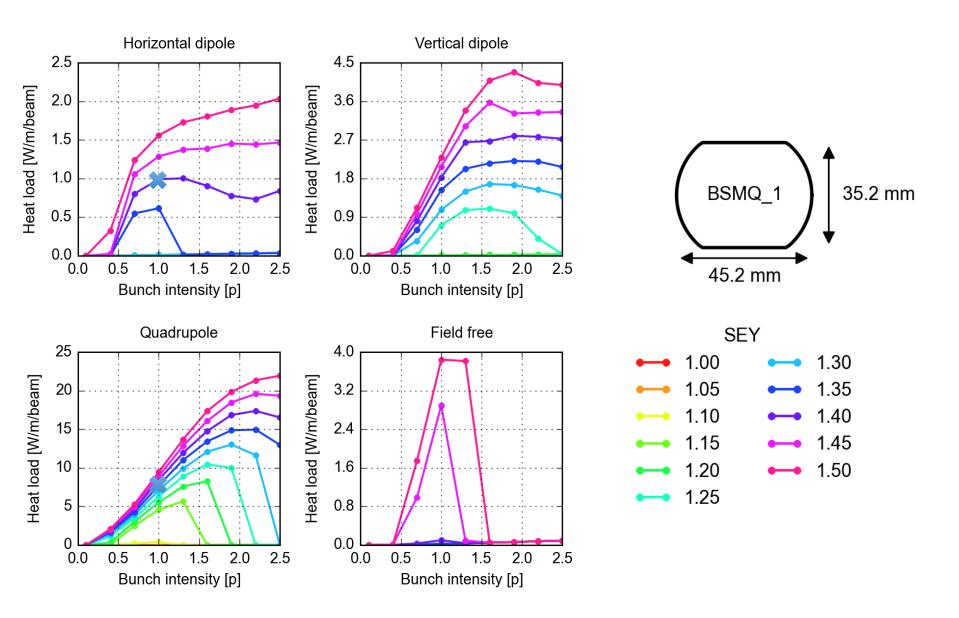


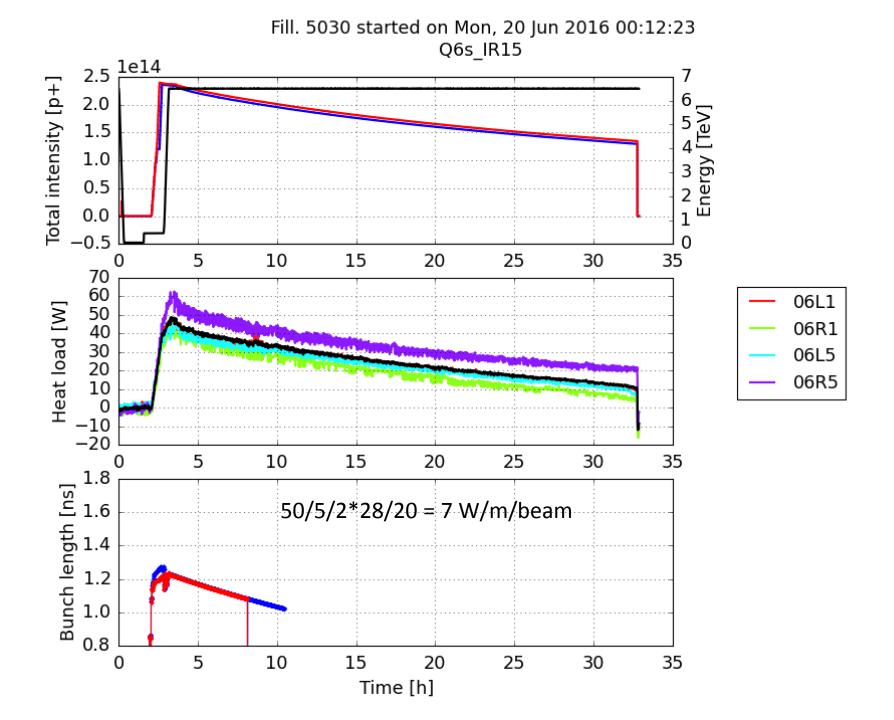
۲

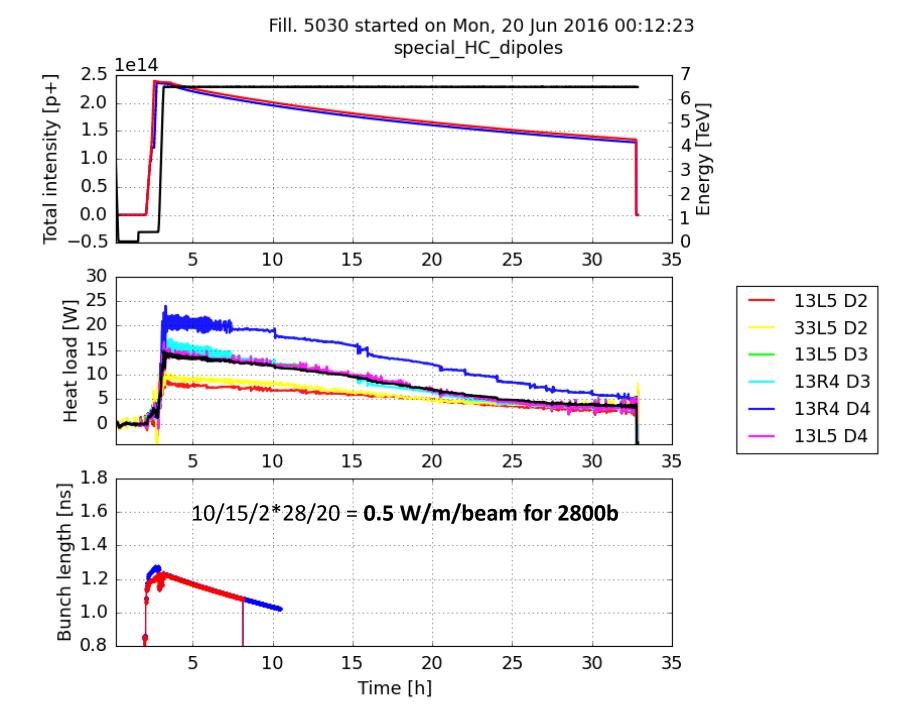
ERN

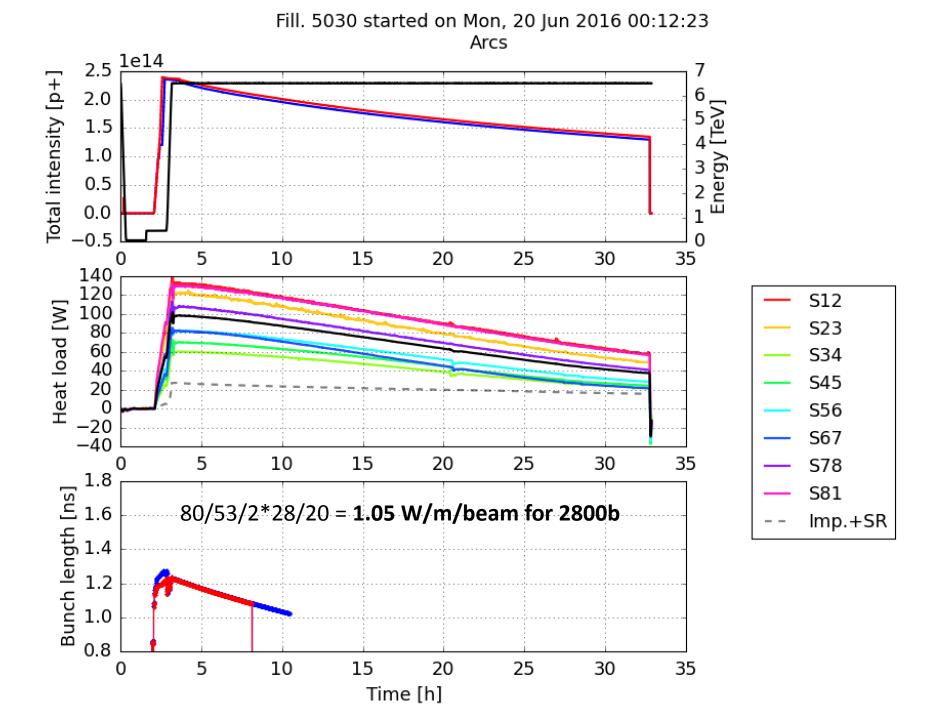
Beam screens in matching quadrupoles (Type 1)

- Beam screen shape very similar to that of the LHC arcs
- The dependence on the **magnetic gradient** is quite weak
- The increase in bunch intensity causes a slight decrease of the electron flux and a slight increase of the multipacting threshold
 - For large SEY the heat load is stronger for HL-LHC intensity
- e-cloud mitigation through scrubbing, low SEY coating (a-C) and/or clearing electrodes is needed to operate within the cryo cooling capacity
- The dependence on the beam size is quite weak

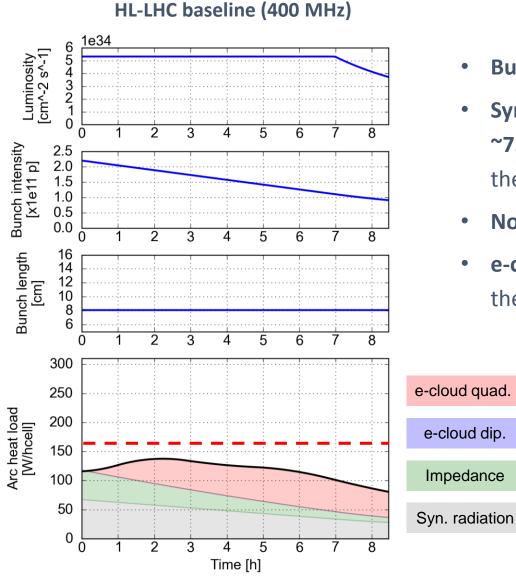

Sector 12:


LSS R1 = 631 W LSS L2 = 742 W


Triplets (SEY = 1.1, rescaling the load from the quads to the full length) R1 = 160./(4*4.2+2*7.15+6.27)*64.3 = 275 W L2 = 150./(2*6.3+2*5.5+9.45)*45 = 204 W

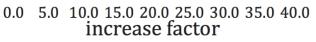

Total LSS L2 (including trieplets) = 950W Total synchrotron radiation = 3000 W (70 W/hc) Total impedance = 2400 W (50 W/hc) Total e-cloud in quads (SEY 1.3) = 1900 W (42 W/hc)

Total Sector 12 (does not include LSS R1) ~8250 W (without any e-cloud in the dipoles!)



Assumption: SEY_{dip} = SEY_{quad} = 1.30

- Synchrotron radiation and impedance take
 ~75 % of the available cooling capacity at the beginning of the fill
- No e-cloud in dipoles all along the fill
- e-cloud in the quadrupoles appears with the decrease in intensity

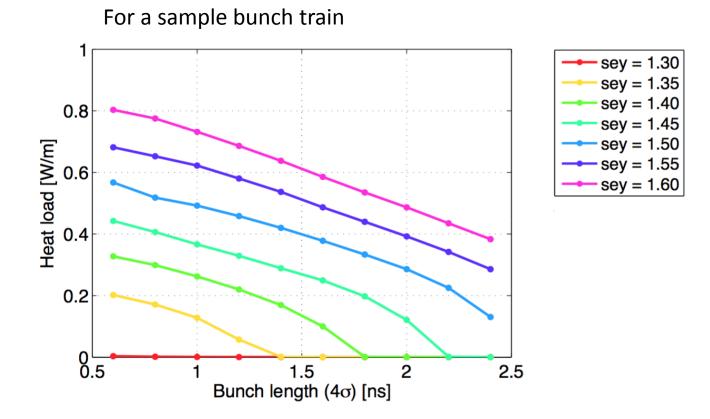

Capacity increase for the different magnet types

	Inventory			[m] r	Q _{BS} [W/m per aperture]			e]	Q _{BS} increase (w.r.t. #0) □ #1 Open valve	
Туре				Length	#0 Op80%	#1 Op100%	#2 Change sit	#3 Change body	■ #1 Open valve ■ #2 Change sit ⊠ #3 Change body	
SAM Type 1	Q5 L/R1	Q5 L/R5	Q6 L/R1	Q6 L/R5	8.2	3.1	7.3	15.5	102.6	5.0 2.3
	Q6 L/R4	Q4 L/R6	Q5 L/R6		6.9	3.7	9.2	18.5	133.1	5.0 36.0 2.5
SAM Turne 2	D3 L/R4				11.2	2.3	5.3	11.4	62.8	5.0 27.6 27.6 27.6 27.6
SAM Type 2	Q6 L/R2	Q6 L/R3	Q6 L/R7	Q6 L/R8	12	2.1	5.0	10.3	56.5	4.8 2.3
	Q5L2	Q5R2	Q5L8	Q5R8	13	2.0	4.6	9.5	50.2	4.8 2.3
	Q5D4L4	D4Q5R4			16.7	3.3	7.4	13.8	33.9	4.2 2.2
Semi-SAM	Q4D2L1	D2Q4R1	Q4D2L5	D2Q4R5	19.4	2.8	6.4	11.6	27.0	9.5 4.1 2.2
	Q4D2L2	Q4D2R2	Q4D2L8	Q4D2R8	22.8	2.4	5.4	9.7	21.1	4.0 2.2 8.7
п	IT L/R1	IT L/R5			35	4.0	6.9	9.0	10.8	2.7 ■ 2.3 ■ 1.7
	IT L/R2	IT L/R8			45	3.0	5.0	6.4	7.2	Increase is very
Arc half cell	all se	ectors			53.5	3.3	4.6	5.3	5.6	■ 1.7 ■ 1.6 ■ 1.4

LSS2 & LSS8

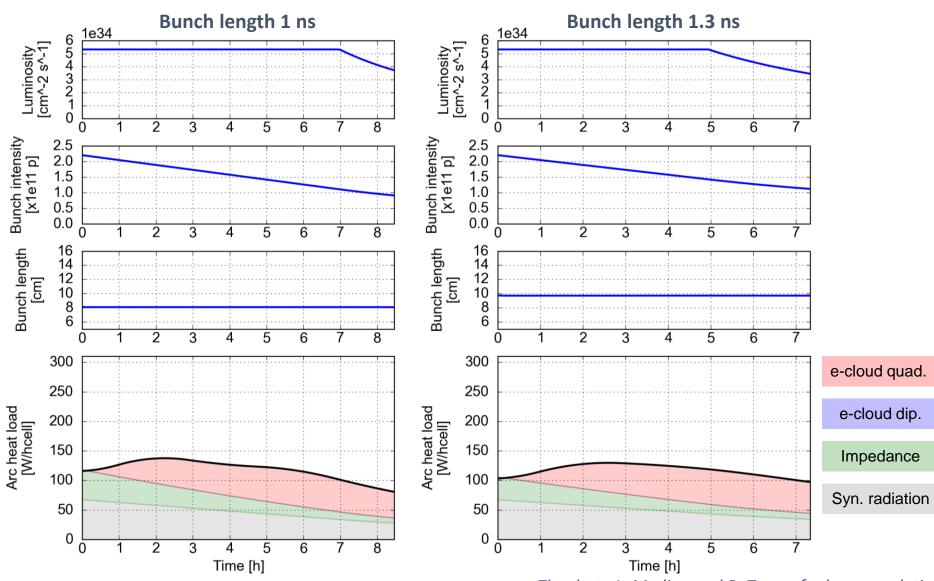
Gain in cooling capacity differs from case to case

- IT & ArcCells are limited by Δp at the circuit
 - \rightarrow Parallelization of the BS channels proposed in previous slides
- SAMs and semi-SAMs present more margin to increase.



•

16/11/2015



Heat load in the arcs: bunch length 1.0 ns vs 1.3 ns

Very small change

 $SEY_{dip} = SEY_{quad} = 1.30$

Thanks to L. Medina and R. Tomas for beam evolutions