FCC week summary and next Steps

May 11th 2016

W. Riegler

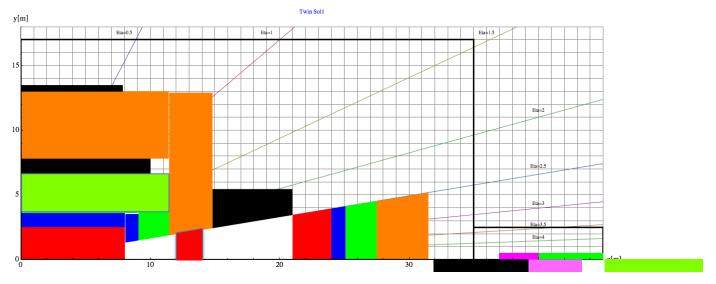
Presenters at the Rome FCC meeting:

Martin Aleksa, Ilaria Besana, Sergei Chekanov, Dmitri Denisov, Zbynek Drasal, Benedikt Hegner, Clement Helsens, Julia Hrdinka, Ashutosh Kotwal, Matthias Mentink, Dave Newbold, Estel Perez, Walter Snoeys, Ian Shipsey, Hans Kristian Soltveit, Herman Ten Kate, Marianna Testa, Georg Viehhauser, Anna Zaborowska,

Baseline Parameters for the FCC-hh Machine

5 year long operation periods

- 3.5 years operation periods with
- 1.5 year shutdown


2 periods at baseline parameters (10 yrs) Phase1

- Peak luminosity 5x10³⁴cm⁻²s⁻¹, 25ns, pileup 170
- Total of 2.5ab⁻¹ (per detector)

3 periods at ultimate parameters (15 yrs) Phase 2

- Peak luminosity <= 30x10³⁴ cm⁻²s⁻¹, **25(5)ns, pileup 1020(204)**
- 5ab⁻¹ per period total of 15ab⁻¹
- → Although some of us are confident about prospects of being able to deal with high pileup, the 5ns option should be considered 'at least with equal priority' as 25ns.
- → The transition from Phase1 to Phase2 luminosity is not related to major hardware changes in the accelerator, so it may be continuous. Important aspect for experiment strategy.

Baseline Geometry used up to now , Twin Solenoid, 6T, 12m bore, 10Tm dipole

Barrel:

Tracker available space: R=2.1cm to R=2.5m, L=8m

EMCAL available space: R=2.5m to R= $3.6m \rightarrow dR= 1.1m$

HCAL available space: R= 3.6m to R=6.0m → dR=2.4m

Coil+Cryostat: R= 6m to R= 7.825 → dR = 1.575m, L=10.1m

Muon available space: R= 7.825m to R= $13m \rightarrow dR = 5.175m$ Revision of outer radius is ongoing.

Coil2: R=13m to R=13.47m → dR=0.475m, L=7.6m

Endcap:

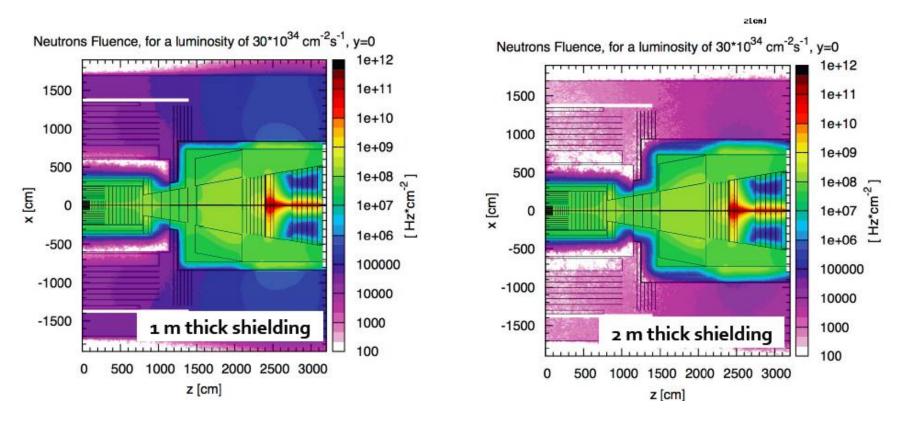
EMCAL available space: z=8m to z= $9.1m \rightarrow dz = 1.1m$

HCAL available space: z= 9.1m to z=11.5m \rightarrow dz=2.4m

Muon available space: z= 11.5m to z= 14.8m \rightarrow dz = 3.3m

Forward:

Dipole: z= 14.8m to z= 21m \rightarrow dz=6.2m

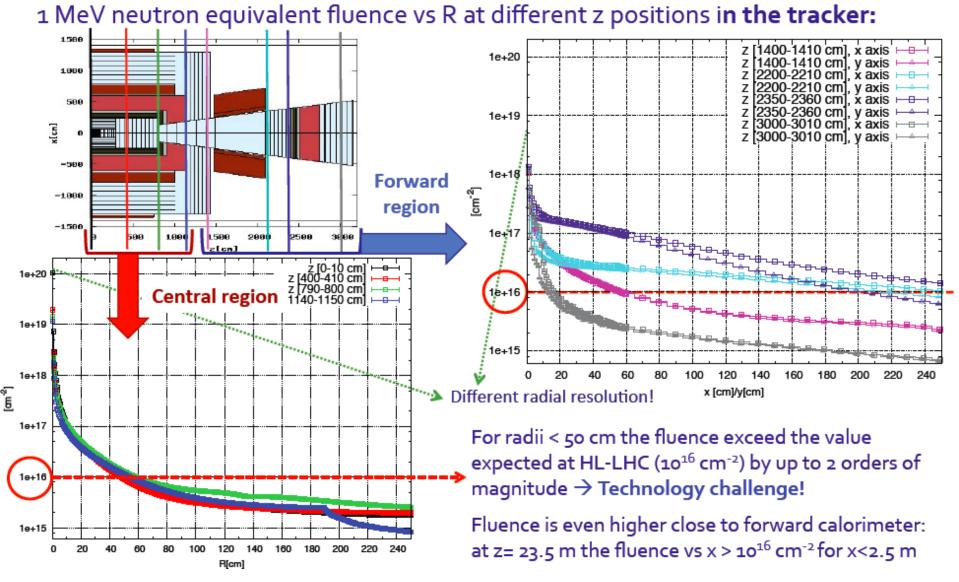

FTracker available space: z=21m to R=24m, L=3m

FEMCAL available space: Z=24m to z= $25.1m \rightarrow dz= 1.1m$

FHCAL available space: z= 25.1m to z=27.5m \rightarrow dz=2.4m

FMuon available space: z= 27.5m to z=31.5m \rightarrow dz=4m

Radiation Calculations

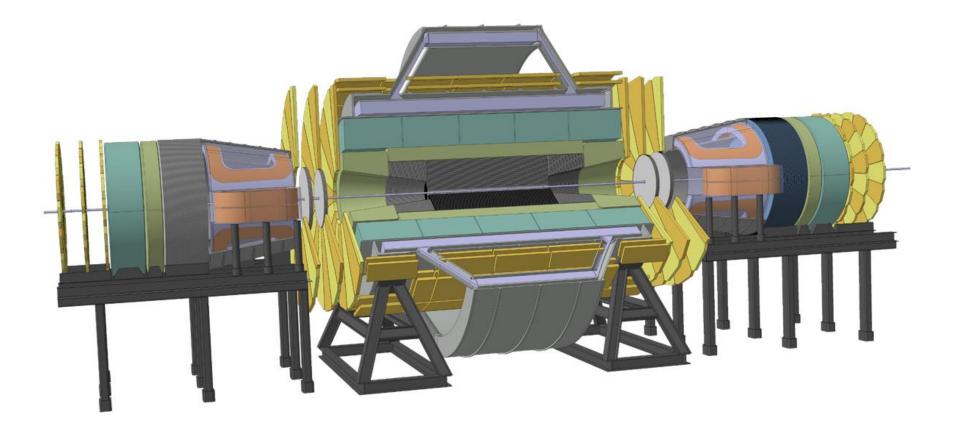


In the central tracker, close to the beampipe, the radiation is dominated by the primary hadrons.

In the forward tracker there is in addition a significant neutron flux from the calorimeter.

Ilaria Besana

Radiation Calculations



Note: For 10¹⁶-10¹⁸ cm⁻² the sensor technology does not yet exist

Ilaria Besana

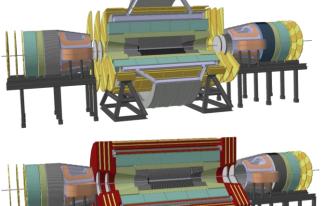
5

Twin Solenoid 6T, 12m bore, Dipoles 10Tm

Development of 'Detector Baseline'

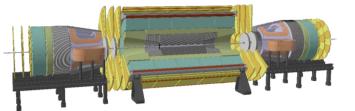
Considering that the experiment cost should be a reasonable fraction of the accelerator cost one could naively assume a very large budget for the detectors.

The magnet group studied the 6T, 12m bore, 10Tm dipole as engineering challenge.

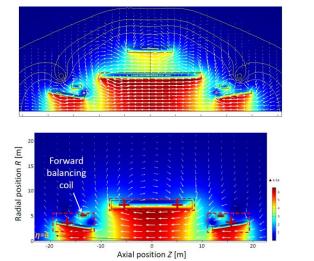

This geometry allows comfortably a 2.4m tracker cavity, 2.4m HCAL for 12 lambda.

Considering that such a magnet system costs on the order of 0.7-0.9 BEuros, and that for a reasonable balance the magnet system should represent between 20-30% of the detector cost, we are talking about a multi Billion cost for such a detector.

Scaling down the magnet system to 4T/10m and 4Tm dipoles reduces the cost by about a factor 2 to 0.35 to 0.45 BEuros, which brings the detector cost closer towards the 'one Billion' range.


We should therefore think about a more realistic baseline for the 2018 report.

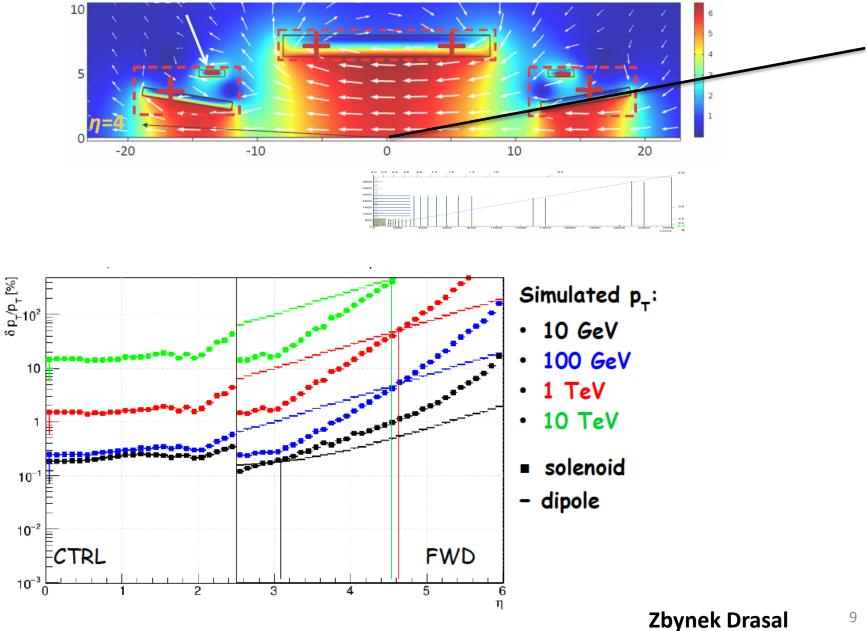
Magnet systems under consideration



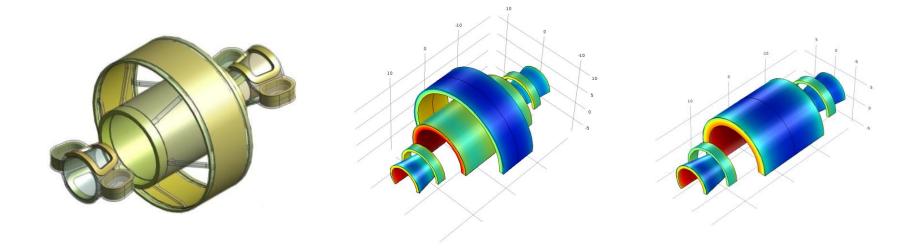
Twin solenoid with dipoles (min. shaft diameter 27.5m)

Partially shielded solenoid with dipoles

Unshielded solenoid with dipoles (min. shaft diameter 16.3m, if rotated under ground)

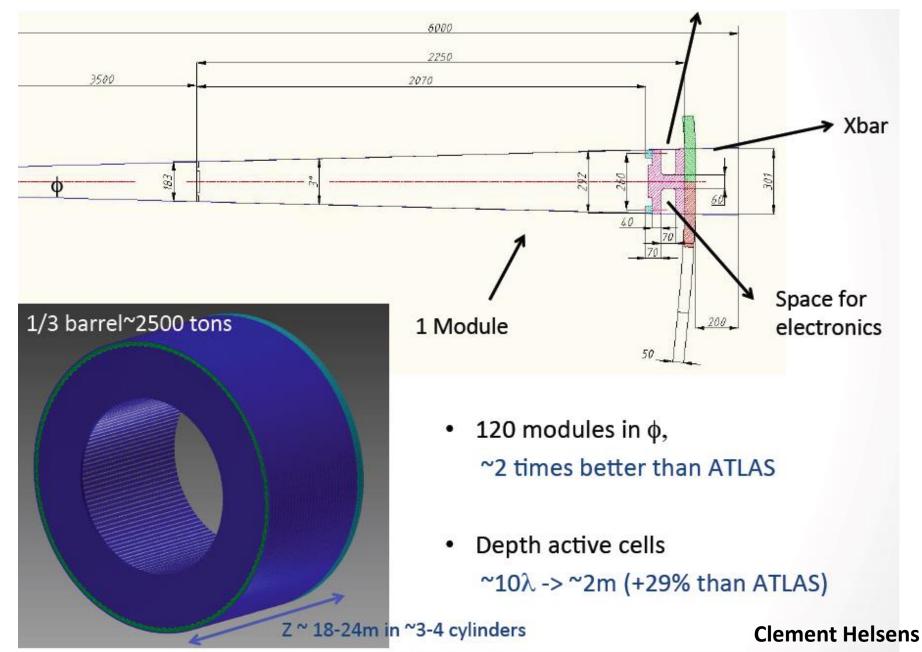

Twin solenoid with balanced conical solenoid

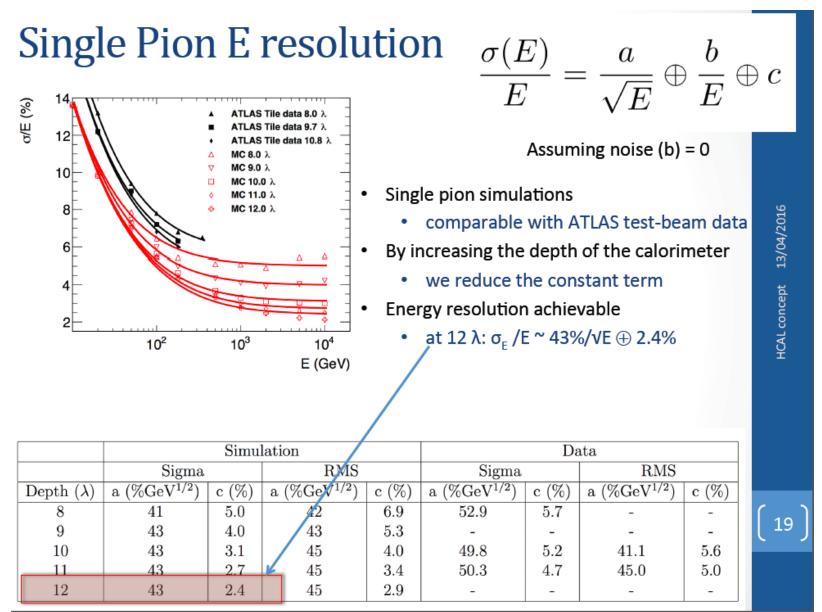
Unshielded solenoid with balanced conical solenoid


Herman Ten Kate, Matthias Mentink

8

Tracking Resolution for Dipole and Solenoid


Advantages of a Forward Solenoid


- \rightarrow Construction is easier
- \rightarrow No need for compensation in the machine
- \rightarrow Keeping the rotational symmetry is a big advantage (Missing E_T etc.)

Some more performance parameters have to be understood before deciding on the 'reference design'.

HCAL Studies

Calorimeter Studies

Clement Helsens

Common Detector Technologies

Comments on Future of MAPS

Optimization of power consumption will be essential to profit from single point resolutions of 5 μ m or even better, which can be achieved even on thin sensitive layers:

- Thin layers to contain sensor leakage
- Low C to reduce or eliminate analog power (C < 1fF ?)
- No clock distribution and special hit-driven architectures for low digital power
- Efficient data transmission

Monolithic CMOS detectors (or advanced hybrid) offering low mass, high granularity, low cost wafer-scale integration, are an excellent candidate for FCC.

Making significant progress on this in advanced CMOS technologies requires sufficient funding for submissions in the R&D phase.

Did not mention many developments, like LGAD, DEPFET, etc

Tracker Mechanics

We should study alternatives to the traditional tracker layouts.

Q: 'Can we build an FCC-hh GPD with triggerless readout?'

- A: 'No'
 - Recording the full data stream is inconceivable even in 203x
 - But 'trigger' may mean something different to today
 - First rough estimates (within factor of two)
 - Tracking and calo each have raw data rates of ~2000TB/s
 - Using 10Gb/s modularity links, this is 4M optical fibres
 - Also implies an event-building network of 40Pb/s capacity
 - For comparison:
 - 'Entire internet WAN' today is ~500Tb/s; largest Google data centre is ~1Pb/s
 - A very scary number, even for 2035, but perhaps not impossible

Technology Issues

- How much power do rad-hard data links take?
 - 'Best in class' *today* seems to be lpGBT at ~500mW for 5Gb/s (plus laser)
 - If no progress on this, indicates a power budget of 2MW for links alone infeasible
 - There are no commercial applications for these links, so no COTS
 - Technology will improve, but there are some fundamental limits
 - New ideas for power saving are coming forward, but may not be applicable for us
- What are the limits?
 - Electrical signalling places a fundamental limit of ~10mW per link
 - \blacktriangleright But Shannon's limit also mandates a move to PAM / FEC \rightarrow more tx and rx power
 - ~10mW for 5Gb/s in lab with 'fancy technology' (high mass, expensive, not rad hard)
 - Reducing to this level would require substantial investment in R&D
 - Not clear when / if we will have access to the required technology nodes
 - The real limit is likely to be cost
 - Also bearing in mind that COTS rx ports are ~\$100, and not decreasing
 - This implies aggregation onto fast (100Gb/s+) fibres from lower speed local links
- Cost & power budget of on-detector electronics is the problem

Dave Newbold

Possible Approaches

- 'Conventional trigger'
 - Extreme processor performance
 - On-detector primitives logic
 - On-detector front end buffers
 - Emphasis on on-detector processing

- 'Triggerless'
 - Massive bandwidth
 - Little on-detector logic
 - Small front end buffers
 - Emphasis on data transmission

- 'Sequential readout'
 - Stage out event to multi-level trigger
 - Successive levels of details with time
 - All data through event-builder network
 - Trigger implemented in software
 - Implement large 'bulk memory' in low radiation zone of detector
 - Emphasis on on-detector buffer

Dave Newbold

Concluding Remarks

A lot of of progress since the last FCC week.

A few reality checks required rescaling of some 'dimensions'.

The FCC hadron detector studies can heavily draw from the LHC experiments and their upgrade plans.

It is very important to plant the thinking about pp physics at 100TeV into the heads of people who work on the 14TeV physics analysis.

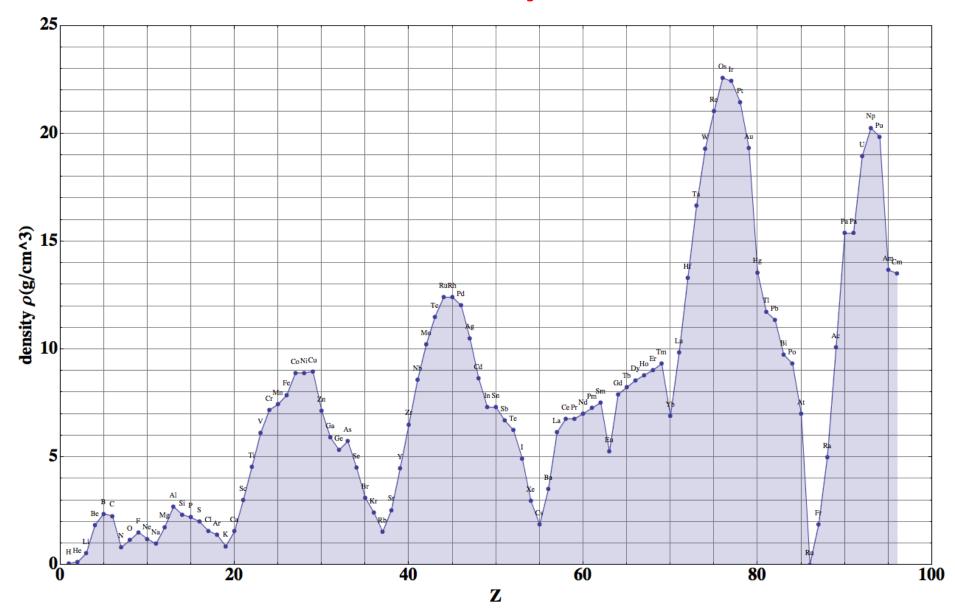
The FCC hadron detectors require significant R&D on detectors and electronics. Once the LHC Phase II R&D is finished, which is soon, we must install dedicated R&D programs.

Access to state of the art electronics processes for readout electronics and sensor (e.g. MAPS) is very expensive, so this R&D will require significant funding.

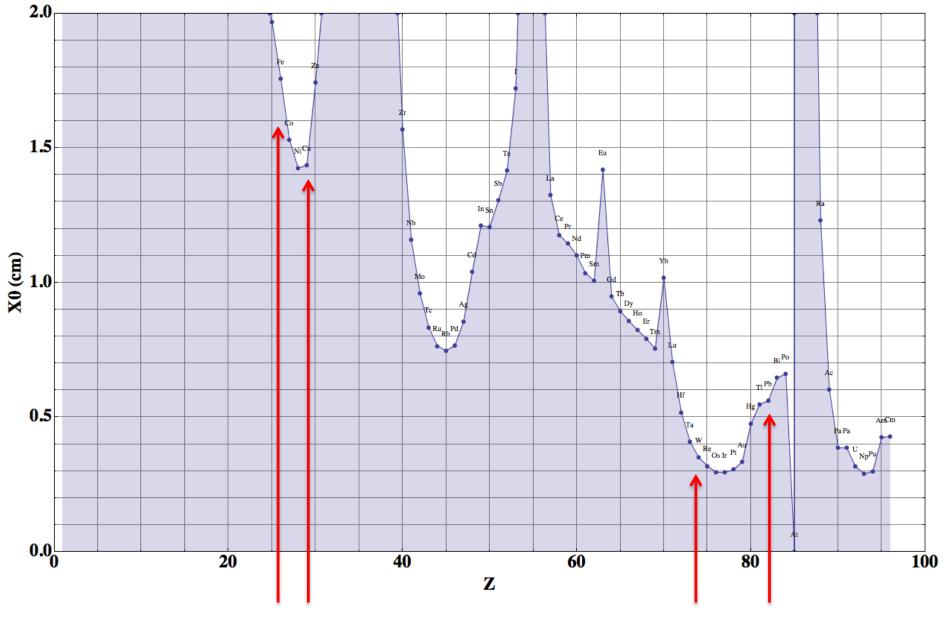
The FCC project is an excellent environment to transfer the vast amount of knowledge and experience in the field to the young generation.

How to proceed from here ?

We need a reference design for which we make a consistent study of magnet, performance, radiation levels, installation, machine detector interface, costing.

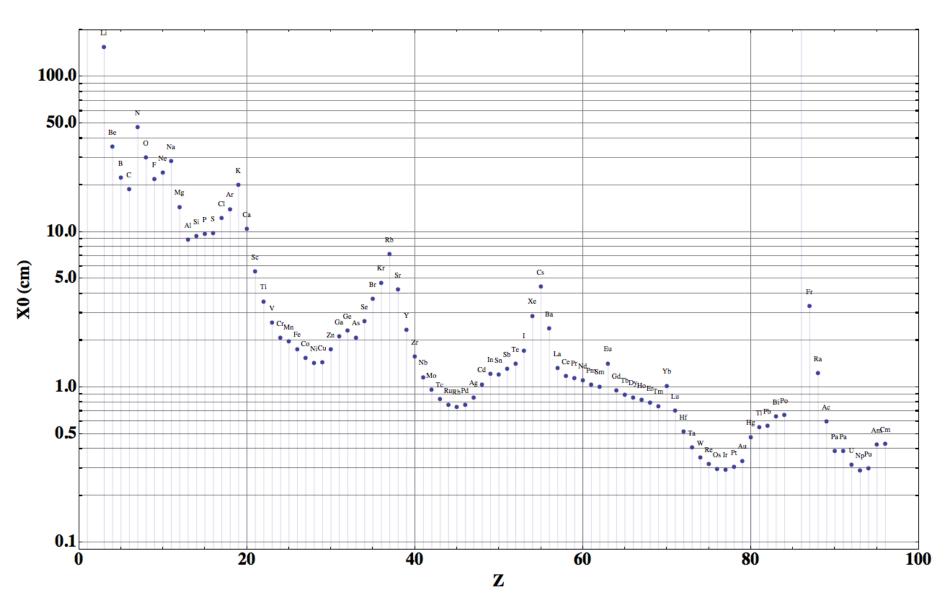

The physics studies with parametrized detector performance will of course vary the detector around this reference.

Possibly we need two reference designs to compare from the start some key differences.


Definition of distribution of space between Tracker, ECAL, HCAL inside 5m bore are the prime consideration.

Some reminders on material properties:

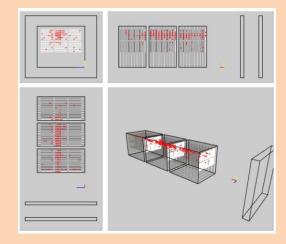
Density

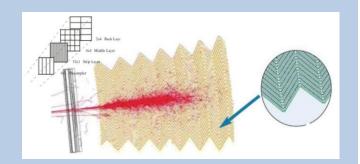

Radiation Length

Fe: 1.76cm Cu: 1.44cm

W: 0.35cm Pb: 0.56cm

Radiation Length

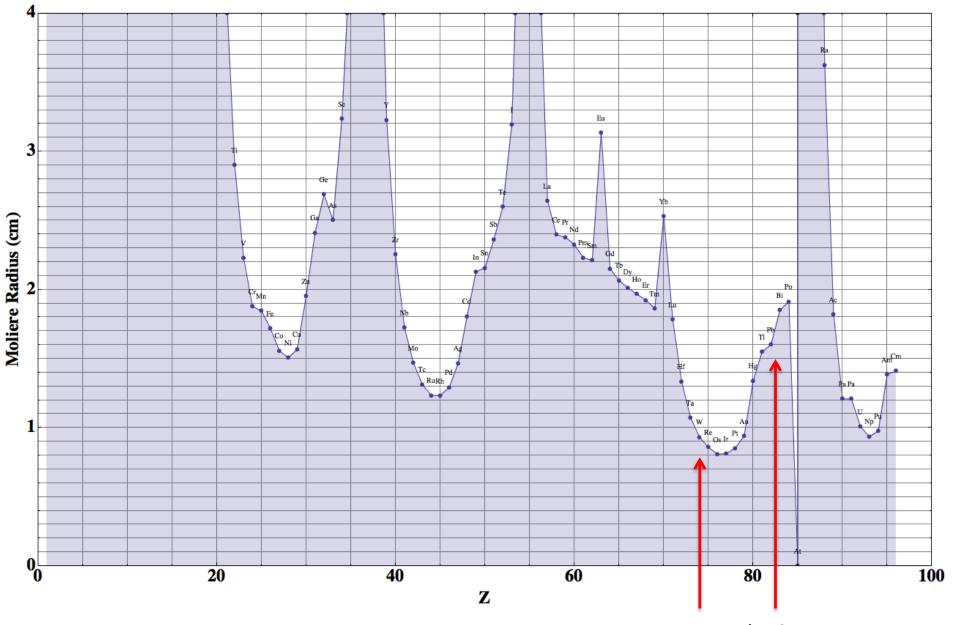

Some Examples


Si/W (CALICE type)

- 525 μ m Si (1x1cm²), W absorbers with changing thickness t_{abs} , 30 layers
- e.g. testbeam module:
 - t_{1-10} =1.4mm, t_{11-20} =2.8mm, t_{21-30} =4.2mm
 - 24X₀ in 10cm thickness
 - *a_{meas}*=16.6%, *c_{meas}*=1.1%
- e.g. FCC barrel, $30X_0$, 1λ (r=2.6m, Δ r=12.5cm, length=16m):
 - 8000m² Si in barrel only (80M channels) in 30 layers
 - − \approx 30m³ of W (\approx 600t) → 14MCHF for W (23CHF/kg)
 - Challenging: Huge surface Si sensors, many channels

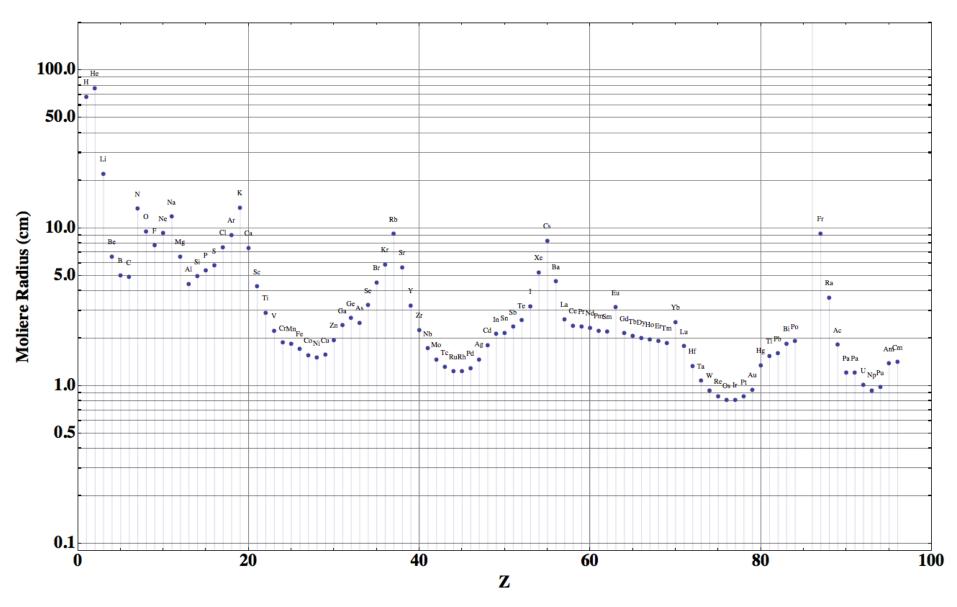
LAr/Pb (ATLAS type)

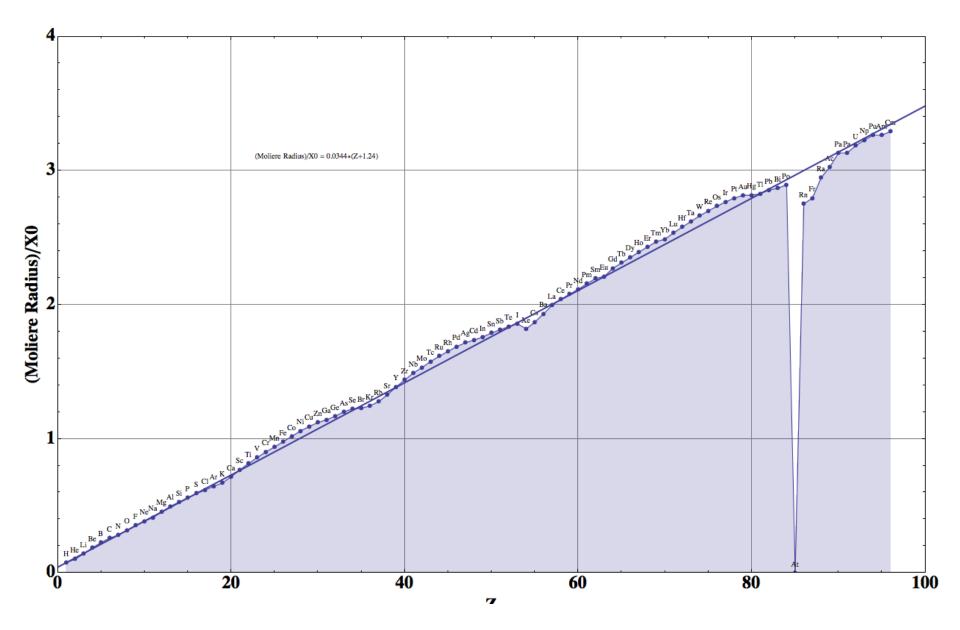
- 4mm LAr, 2mm Pb/steel absorbers
 - a_{meas} =10%, c_{meas} =0.7%
 - 22X₀ in 50cm thickness
- e.g. FCC barrel, $30X_0$, 1.5λ (r=2.7m, Δ r=60cm, length=16m):
 - ~500k channels (2x2 granularity with respect to ATLAS)
 - ~45m³ Pb (≈500t), ≈15m³ stainless steel (≈120t), ≈120m³ LAr (≈170t)
 - Challenging: Low-material cryostat and feed-throughs!



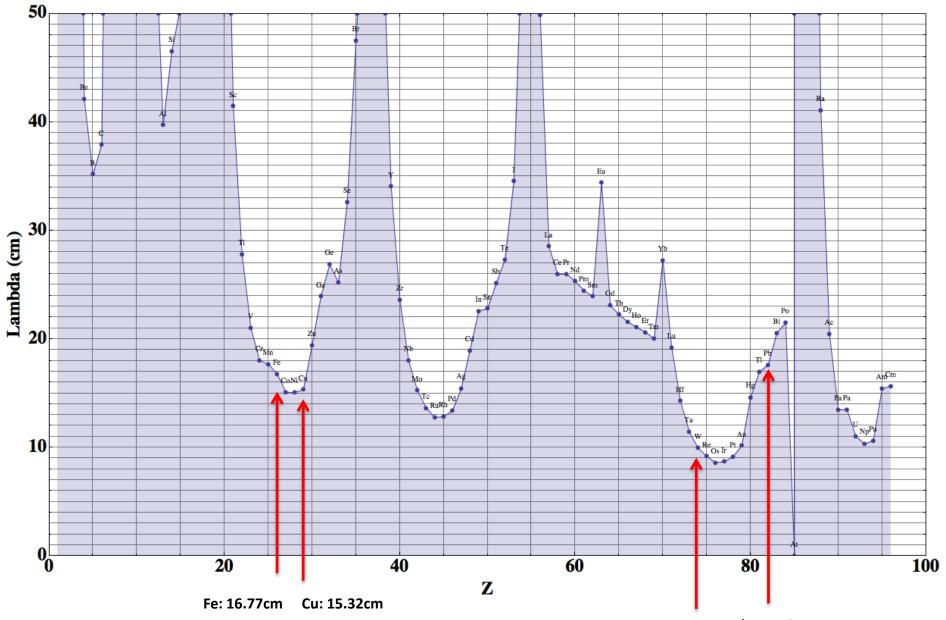
May 11, 2016

M. Aleksa (CERN)

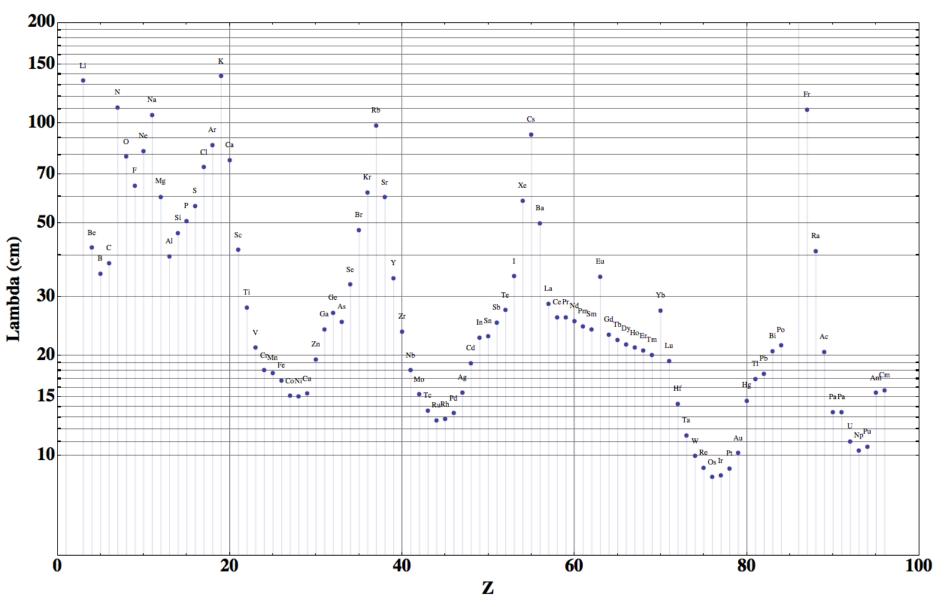

Moliere Radius

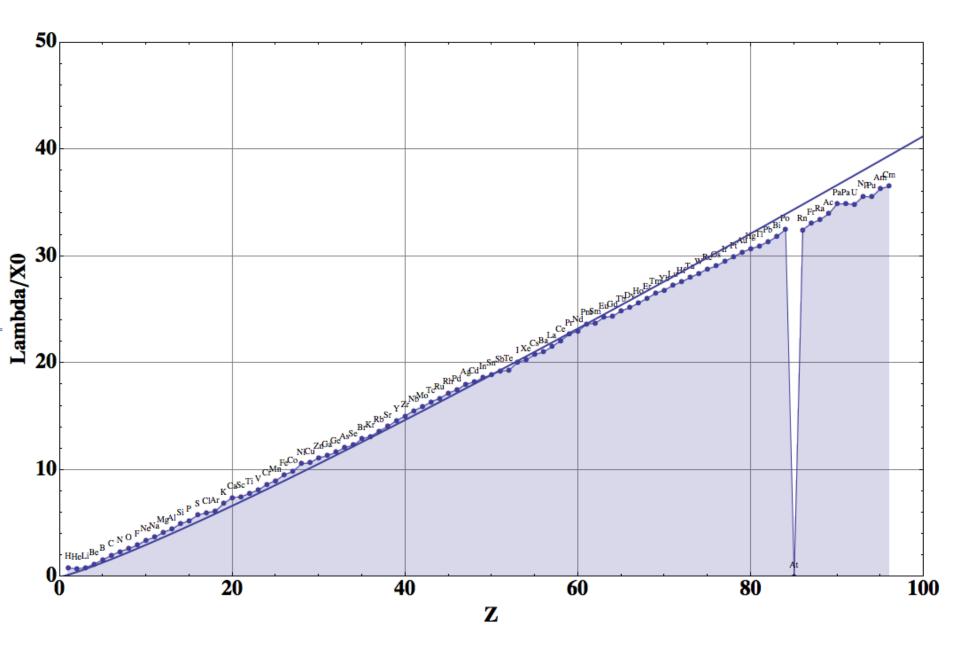


W: 0.93cm Pb:


Pb: 1.6cm

Moliere Radius




Nuclear Interaction Length

W: 9.95cm Pb: 17.59cm

Nuclear Interaction Length

CLIC_SID [5T]

CLIC detector parameters,2 reference designs



Fig. 3.1: Longitudinal cross section of the top quadrant of CLIC_ILD (left) and CLIC_SiD (right).

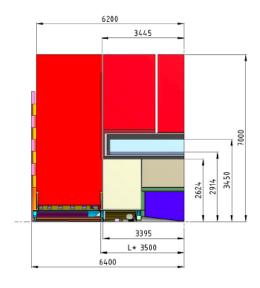
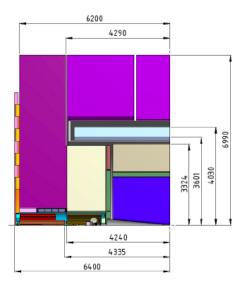
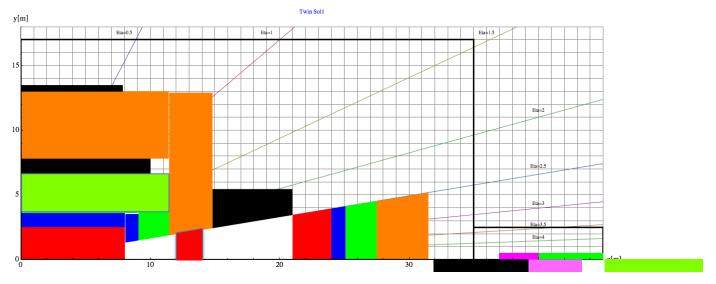



Fig. 11.1: Quarter View of CLIC_SiD

CLIC_ILD [4T]


CLIC detector parameters, 2 reference designs

: 3.2: Some key parameters of the CLIC detector concepts. The inner radii refer to the insci of the polygon. All dimensions are given in millimetres.

	-	
	CLIC_ILD	CLIC_SiD
Overall Dimensions		
Outer size [W×H×L]	$14000\times14000\times12400$	$14000 \times 14000 \times 12400$
Estimated total weight	12200 tons	12500 tons
Beam-line height	7900	7900
Vertex Detector		
Inner radius	31	27
Outer radius	60	77 (barrel), 169 (disks)
Max. Z	125 (barrel), 257 (disks)	99 (barrel), 830 (disks)
Barrel layers	6 (3 double layers)	5
Forward disks	6 (3 double layers)	7
Barrel Tracker		
Technology	TPC (Silicon strips)	Silicon strips
Inner radius	329 (165)	230
Outer radius	1808 (1835)	1239
Max. Z	2250	578 to 1536
Max. samples	2 (Si), 224 (TPC), 1 (Si)	5
Forward Tracker		
Technology	Silicon strips	Silicon strips
Inner radius	47 to 218	207 to 1162
Outer radius	320	1252
Max. Z	1868	1556
Max. samples	5	4
ECAL: Barrel		
Absorber	Tungsten	Tungsten
Active elements	Silicon pads	Silicon pads
Sampling layers	$30(20 \times 2.1, 10 \times 4.2)$	$30(20 \times 2.5, 10 \times 5)$
Cell size	5.1×5.1	3.5×3.5
X_0 and λ_I	23 and 1	26 and 1
Inner radius	1847	1290
Outer radius	₂₀₂₀ dR≈0.173m	1430 dR≈0.14m
Max. Z	2350	1765

	Table 3.2: continued	
	CLIC_ILD	CLIC_SiD
ECAL: Endcap		
Absorber	Tungsten	Tungsten
Active elements	Silicon pads	Silicon pads
Sampling layers	$30(20 \times 2.1, 10 \times 4.2)$	$30(20 \times 2.5, 10 \times 5)$
Cell size	5.1×5.1	13 mm ² hexagons
X_0 and λ_I	23 and 1	26 and 1
Inner radius	270	222
Outer radius	2270	1269
Min. Z	2450	1657
Max. Z	2622	1800
HCAL: Barrel		
Absorber	Tungsten	Tungsten
Sampling layers	$75 \times 10 \text{ mm}$	$75 \times 10 \text{ mm}$
Cell size	30×30	30×30
λ_{I}	7.5	7.5
Inner radius	2058	1447
Outer radius	₃₂₉₆ dR≈1.238m	₂₆₂₄ dR≈1.187m
Max. Z	2350	1765
HCAL: Endcap		
Absorber	Steel	Steel
Sampling layers	$60 \times 20 \text{ mm}$	$60 \times 20 \text{ mm}$
Cell size	30×30	30×30
λ_{I}	7.5	7.5
Inner radius	400	509
Outer radius	3059	2624
Min. Z	2650	1800
Max. Z	4240	3395
Coil + cryostat		
Field on central axis	4 T	5 T
Free bore	3426	2744
Outer radius	4290	3710
Max. Z	4175	3245
Yoke & Muon System: Barrel	G , 1	
Material	Steel	Steel
Inner radius	4404	3914
Outer radius	6990	7000
Number of layers	9	9
Yoke & Muon System: Endcap		0 1
Material	Steel	Steel
Inner radius	690	690 7000
Outer radius	6990	7000
Max. Z	6200	6200
Number of layers	9	9

Baseline Geometry used up to now , Twin Solenoid, 6T, 12m bore, 10Tm dipole

Barrel:

Tracker available space: R=2.1cm to R=2.5m, L=8m

EMCAL available space: R=2.5m to R= $3.6m \rightarrow dR= 1.1m$

HCAL available space: R= 3.6m to R=6.0m → dR=2.4m

Coil+Cryostat: R= 6m to R= 7.825 → dR = 1.575m, L=10.1m

Muon available space: R= 7.825m to R= $13m \rightarrow dR = 5.175m$ Revision of outer radius is ongoing.

Coil2: R=13m to R=13.47m → dR=0.475m, L=7.6m

Endcap:

EMCAL available space: z=8m to z= $9.1m \rightarrow dz = 1.1m$

HCAL available space: z= 9.1m to z=11.5m \rightarrow dz=2.4m

Muon available space: z= 11.5m to z= 14.8m \rightarrow dz = 3.3m

Forward:

Dipole: z= 14.8m to z= 21m \rightarrow dz=6.2m

FTracker available space: z=21m to R=24m, L=3m

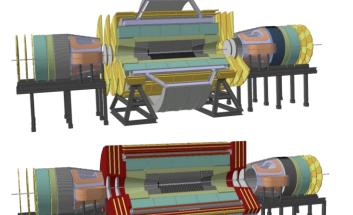
FEMCAL available space: Z=24m to z= $25.1m \rightarrow dz= 1.1m$

FHCAL available space: z= 25.1m to z=27.5m \rightarrow dz=2.4m

FMuon available space: z= 27.5m to z=31.5m \rightarrow dz=4m

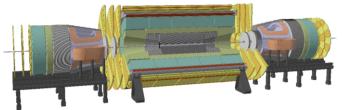
Two reference designs, with large and small tracker radius ?

We could use two reference designs, one with large tracker radius and W HCAL and one with small tracker radius and Fe HCAL, e.g.


2.5m (tracker cavity) + 1m ECAL (1 lambda + supports) + 1.5m (9 lambda W + supports)

1.5m (tracker cavity) + 1m ECAL (1 lambda + supports) + 2.5m (9 lambda Fe + supports)

This would be two very interesting limiting cases that show the influence of tracking performance, radial distance of the calorimetry, Bremsstrahlung & ECAL, Radiation load when comparing W and Fe etc.

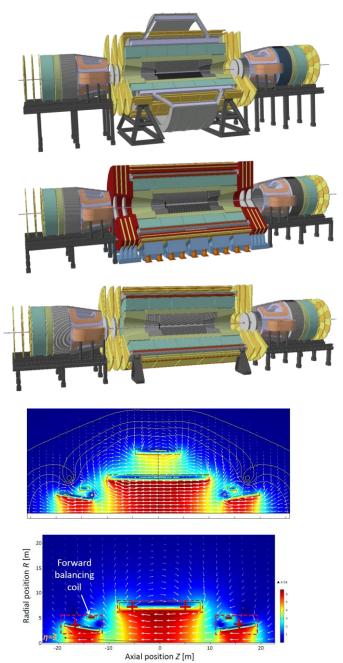

We have to come up with two proposals for the next hadron detector meeting in about 4 weeks time.

Magnet systems under consideration

Twin solenoid with dipoles (min. shaft diameter 27.5m)

Partially shielded solenoid with dipoles

Unshielded solenoid with dipoles (min. shaft diameter 16.3m, if rotated under ground)



Twin solenoid with balanced conical solenoid

Unshielded solenoid with balanced conical solenoid

Herman Ten Kate, Matthias Mentink

Magnet Systems

Concerning the shielded and unshielded options we still have to evaluate the muon performance ! Clearly the unshielded version is preferred in terms of cost and shaft size.

The decision on how to proceed with the forward solenoid and dipole is difficult.

It is clear that the forward solenoid is preferred in terms of construction, and it also preserves the phi symmetry which is crucial.

Specifically the MET trigger performance, that is crucial for dark matter search, will be very complex without phi symmetry.

We should probably first evaluate the performance of the forward solenoid version and then try to understand where the dipole could give the improvement ?

Trigger versus continous readout

Continuous readout of the tracker will be very challenging, so we also must investigate a scheme using a first level 'hardware' trigger.

Sampling the Calorimeters at the full bunch crossing rate might be in reach, since this is already done e.g. for the ATLAS EMCAL and HCAL for Phase II.

Are Calorimeter and Muon Triggers then sufficient to bring down the tracker readout rates to acceptable levels e.g. to 1MHz ?

CMS will use a track trigger at 40MHz for PhaseII, but ATLAS does not, so we have to look into the specific reasons and difference in order to establish a baseline strategy for an FCC detector.

Probably this will result in a specification on the Calo and Muon resolution at L1, so we could envisage as a baseline for the triggered readout:

Full digitization of calorimeters and muons to arrive at a tracker readout rate of 1MHz ?

 \rightarrow Work with ATLAS/CMS trigger experts.

Proposal for next Step

Provide two detailed reference designs for the next meeting.

Provide a baseline triggering strategy (in addition to the continuous readout idea) for the next meeting.

Use forward solenoid geometry as a baseline.

Establish muon trigger performance (t.b.d. who/how).