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Gravitational waves: 
sources and properties 
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General relativity in a nutshell 
 “Spacetime tells matter how to move; matter tells spacetime how to curve”  
                                     John Archibald Wheeler (1990) 
    A massive body warps the spacetime fabric 
    Objects (including light) move along paths 
      determined by the spacetime geometry 
  
 Einstein’s equations 
 
 
  
   → In words: Curvature = Matter 
 
 Einstein tensor Gµν: manifold curvature 
 Stress-energy tensor Tµν: density and flux of energy and momentum in spacetime 
 Equality between two tensors 
   → Covariant equations 
 Need to match Newton’s theory for weak and slowly variable gravitational fields 
    → Very small coupling constant: the spacetime is very rigid 
 Non linear equations: gravitational field present in both sides 4 
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Schwartzschild Radius 
 Newtonian escape velocity:   
 
 
 Schwartzschild radius RS (1916): 
    RS(M) such as ve = c 
   → Very small for « usual » celestial objects 
         Planets, stars 
  
 Compacity 
 
 
 
 
 
 Beware: compact and dense are two different things! 
    Black hole « density » 
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Black holes 
 Spacetime region in which gravitation is so strong that nothing, 
   not even light, can escape from inside its horizon 
 
 Formed by the collapse of massive stars running out of fuel 
  
 Can grow by accreting matter 
    Supermassive black holes are though to exist inside most galaxies 
      → E.g. Sagittarius A* in the center of the Milky Way 
 
 Characterized by three numbers (Kerr, 1963) 
    Mass 
    Spin 
    Electric charge 
 
 Black hole horizon 
    Once crossed there’s no way back 
    Can only grow with time 
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Gravitational waves (GW) 
 One of the first predictions of general relativity (1916) 
    Accelerated masses induce perturbations of the spacetime 
     which propagate at the speed of light 
    Linearization of the Einstein equations (gµν = ηµν + hµν, |hµν| << 1) 
      leads to a propagation equation far from the sources 
 
 Traceless and transverse (tensor) waves  
    2 polarizations: « + » and « × » 
      → See next slide for the interpretation of these names 
 
 Quadrupolar radiation 
    Need to deviate from axisymmetry to emit GW 
    No dipolar radiation – contrary to electromagnetism 
 
 GW amplitude h is dimensionless 
    Scales with the inverse of the distance from the source 
    GW detectors sensitive to amplitude (h∝1/d) and not intensity (h2∝1/d2) 
      → Important to define the Universe volume a given detector is sensitive to 
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Effect of gravitational waves on test masses 
 GW: propagating perturbation of the spacetime metric 
    Acts on distance measurement between test masses (free falling)  
 
 
 
 
 
 

 Effect of the two GW polarizations on a ring of free masses 
 
 

    « + » polarization 
 
 
    
 
    « × » polarization 
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Do gravitational waves exist? 
 Question (officially) solved since February 11 2016! 
    But was very relevant beforehand … and long-standing in the community 
 
 Controversy for decades 
    Eddington, 1922: « GW propagate at the speed of thought » 
    1950’s: general relativity is mathematically consistent (Choquet-Buhat) 
 
 Indirect evidence of the GW existence: 
   long-term study of PSR B1913+16 – see next slide 
    Galactic (6.4 kpc away) binary system 
    Two neutron stars, one being a pulsar 
 
 Discovered by Hulse and Taylor in 1974 
    Nobel prize 1993 
 
 Laboratory for gravitation study 
    GW in particular 
      → Taylor & Weisberg, Damour 
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Sources of gravitational waves 
 Einstein quadrupole formula (1916) 
    Power radiated into gravitational waves 
      Q: reduced quadrupole momenta  
      
 Let’s rewrite this equation introducing some typical parameters of the source  
    Mass M, dimension R, frequency ω/2π and asymmetry factor a 
 
    One gets                                        and  
 
 
 Using ω~v/R and introducing RS, one gets: 
 

→ A good GW source must be 
    Asymmetric 
    As compact as possible  
    Relativistic 
 

 Although all accelerated masses emit GW,  no terrestrial source can be detected 
   → Need to look for astrophysical sources (typically: h~10−22 ÷ 10−21) 
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A diversity of sources 
 Rough classification 
    Signal duration 
    Frequency range 
    Known/unknown waveform 
    Any counterpart (E.M., neutrinos, etc.) expected? 
 

 Compact binary coalescence 
    Last stages of the evolution of a system like PSRB 1913+16 
      → Compact stars get closer and closer while loosing energy through GW 
    Three phases: inspiral, merger and ringdown 
      → Modeled via analytical computation and numerical simulations 
    Example: two masses M in circular orbit (fGW = 2 fOrbital) 
 
 
 
 Transient sources (« bursts ») 
    Example: core collapses (supernovae) 
 

 Permanent sources 
    Pulsars, Stochastic backgrounds 11 
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Gravitational wave spectrum 
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Gravitational wave detectors 
 On the ground 
    Resonant bars (Joe Weber’s pioneering work) 
      → Narrow band, limited sensitivity 
    Interferometric detectors 
      → LIGO, Virgo and others 
      → 2nd generation (« advanced ») detectors started operation 
           Design studies have started for 3rd generation detectors (Einstein Telescope) 
    Pulsar Timing Array (http://www.ipta4gw.org)  
      → GW would vary the time of arrival pulses emitted by millisecond pulsars 
 

 In space  
    Future mission eLISA (https://www.elisascience.org, 2030’s) 
    Technologies tested by the LISA pathfinder mission, sent to space last December 
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1916-2016: a century of progress 
 1916: GW prediction (Einstein) 
 
 
 
 1963: rotating BH solution (Kerr)  
 
 
 
 
 
 
 
 
 1990’s: CBC PN expansion 
   (Blanchet, Damour, Deruelle, 
   Iyer, Will, Wiseman, etc.) 
 
 2000: BBH effective one-body 
   approach (Buonanno, Damour) 
 
 2006: BBH merger simulation 
   (Baker, Lousto, Pretorius, etc.) 
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1957 Chapel Hill Conference      (Bondi, Feynman, Pirani, etc.) 

 1960’s: first Weber bars 
 
 1970: first IFO prototype (Forward) 
 1972: IFO design studies (Weiss) 
 1974: PSRB 1913+16 (Hulse & Taylor) 
 
 1980’s: IFO prototypes (10m-long) 
   (Caltech, Garching, Glasgow, Orsay) 
 
 End of 1980’s: Virgo and LIGO proposals 
 
 1990’s: LIGO and Virgo funded 
 
 2005-2011: initial IFO « science » » runs 
 
 2007: LIGO-Virgo Memorandum 
             Of Understanding 
 
 2012 : Advanced detectors funded 
 
 2015: First Advanced LIGO science run 
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 Instructions to build a GW detector  Solution: a Michelson interferometer 
    Use free test masses      → Suspended mirrors 
    Locate them far apart      → Kilometer-long arms 
    Measure their relative displacement    → Get rid of common mode noise 
    Make sure their motion is not     → Design + active control 
      perturbated by any external source                               + noise mitigation/monitoring 
 
 
 
 
 
 
 
 
 

 

 Incident GW     Best sensitivity around the dark fringe 
   ⇒ Optical path changes     
   ⇒ Output power variation 

Gravitational wave interferometric detectors 
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Suspended Michelson interferometer 
 Mirrors act as 
   test masses 
 
 Incident GW  
   → Modification of 
        optical paths 
   → Variation of detected 
        light power 
 
 Output power 
 
 
 
 Expanding the phase, one gets 
 
 

 and finally 
 
 Working point set ~10−11 m away from the dark fringe 17 
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Interferometer sensitivity 
 Output power:   
 
 Shot noise  
    A fundamental quantum noise 
    Fluctuation of the number of photons 
      detected during a duration ∆t 
 
 Minimum detectable GW amplitude such that   
 
→ 
 
 

 Improving the sensitivity 
    Increase incident power on the beamsplitter 
    Increase length of the interferometer arms 
 
 Reaching hmin~10-22 or below requires 
    Kilowatts of laser power and 
    Arms about a hundred kilometer long 18 

h L P P indet ∝ δ

t
P  P in

noiseshot ∆
∝ δ

noiseshot det P    P δδ =

Δt L P
h

in
min

1
∝

Virgo/LIGO 
design 

Bandpass and notch filtering 
25 nW offset subtracted 

500 W incident on the beamsplitter 

Suspensions not drawn 

© Dan Hoak 



Improving the interferometer sensitivity 
 Reminder: Interferometer (IFO) sensitivity  
 
→ Use high power laser, power- and frequency-stabilized 
      Tens to hundreds of watts 
 

→ Kilometric arms (Virgo: 3km; LIGO: 4km) 
→ Add Fabry-Perot cavities in the kilometric arms  
      Light path length increased: L → L × GFP 

                            GFP~300 for Advanced Virgo 
      Low-pass filter on the IFO frequency response: 
        processes faster than the light storage time are filtered 
 

→ Add recycling mirror between the input laser and the beamsplitter 
      IFO set to the dark fringe 
        + highly reflecting mirrors 
        Pin → Pin × Grec, Grec~40 for Advanced Virgo 
 

→ Minimize transmission and losses for all mirrors 
      Set the gains of the interferometer cavities    
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The Advanced Virgo detector scheme 
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Noise & sensitivity 
 Noise: any kind of disturbance which pollutes the dark fringe output signal 
 

 Detecting a GW of frequency f ↔ amplitude h « larger » than noise at that frequency 
 

 Interferometers are wide-band detectors 
    GW can span a wide frequency range 
    Frequency evolution with time is a key feature of some GW signals 
      → Compact binary coalescences for instance  
 

 Numerous sources of noise 
    Fundamental 
      → Cannot be avoided; optimize design to minimize these contributions 
    Instrumental 
      → For each noise, identify the source; then fix or mitigate 
      → Then move to the next dominant noise; iterate… 
    Environmental 
      → Isolate the instrument as much as possible; monitor external noises 
 

 IFO sensitivity characterized by its power spectrum density (PSD, unit: 1/√Hz) 
 

    Noise RMS in the frequency band [fmin;fmax] = 21 ∫
fmax

min

f

f
2 df (f)PSD



Main interferometer noises 
Thermal noise  

(coating + suspension) 

Radiation 
pressure  

fluctuation 

Residual gas 
(phase noise) 

 Seismic vibration 
 Newtonian noise 

Stray-light 

Shot noise 

Residual 
laser noise 
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Interferometer control 
 A complex working point 
    Resonant Fabry-Perot and recycling cavities + IFO on the dark fringe 
    Arm length difference controled with an accuracy better than 10−15 m 
    The better the optical configuration, the narrower the working point 
 

 « Locking » the IFO is a non-trivial engineering problem 
    Use several error signals to apply corrections on mirror positions and angles 
      → Pound-Drever-Hall signals (phase modulation) 
      → Auxiliary green lasers (for 2nd generation IFOs) 
    Feedback loops from few Hz to few kHz 
    Cope with filter bandwith and actuator range 
 

 Multi-step lock 
   acquisition procedure 
 Free mirrors 
 
 Local control 
 
 Global control 
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Control chain 
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 Example of the dark fringe error signal 
 
 Sensing  
    Photodiode readout 
 
 Filtering 
    Algorithms use error 
      signals to compute 
      globally corrections 
      sent to the mirrors 
 
 Actuation 
    Corrections are applied to the mirrors 
      by the suspensions: current flows into 
      coils facing magnets glued on the mirrors 
 
 Dedicated measurements to compute the sensing and actuation transfer functions 



Reconstruction of the «GW channel» 
 Control loops act up to a few hundred Hz, 
   both on noise and on a possible GW signal 
    Need to subtract their contributions to get 
      h(t) = noise(t) [+ possibly GW(t)] 
       
 Cavity optical transfer functions (W/m) 
   directly measured by acting on mirrors 
   during dedicated runs 
    Laser wavelength used as benchmark: 
      → Frequency known at the Hz level 
   
 
 

 Various gains monitored using calibration 
   lines injected on each mirror suspension 
 
 Finally, divide by the arm length to get h(t) 
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The Virgo collaboration 
 5 European countries 
 
 20 laboratories 
 
 About 250 members (LIGO: 750) 
 
 Virgo was built by 11 CNRS (France) 
    and INFN (Italy) laboratories 
    Budget: ~150 M€ 
    Groups from the Netherlands, Poland 
   and Hungary joined later the project 
 
 Advanced Virgo funding: ~20 M€ 
    Plus in-kind contribution from NIKHEF 
 
 The EGO (European Gravitational Observatory) 
   consortium is managing the Virgo site in Cascina. 
   It provides the infrastructures and ressources to 
   ensure the detector construction and operation 
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        The Virgo site 
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Network of 
gravitational wave 

interferometric detectors 
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Interferometer angular response 
 An interferometer is not directional: it probes most of the sky at any time 
    More a microphone than a telescope! 
 
 The GW signal is a linear combination of its two polarisations  
                           h(t) = F+(t) × h+(t) + F×(t) × h×(t) 
    F+ and F× are antenna pattern functions which depend on 
      the source direction in the sky w.r.t. the interferometer plane 
      → Maximal when perpendicular to this plane 
      → Blind spots along the arm bisector (and at 90 degres from it) 

29 

+ polarization              × polarization                 unpolarized 



A network of interferometric detectors 
 A single interferometer is not 
   enough to detect GW 
    Difficult to separate a signal 
      from noise confidently 
    There have been unconfirmed 
      claims of GW detection 
 
→ Need to use a 
     network of interferometers 
 

 Agreements (MOUs) between the 
   different projects – Virgo/LIGO: 2007 
    Share data, common analysis, 
      publish together 
 

 IFO: non-directional detectors; 
   non-uniform response in the sky 
 

 Threefold detection: reconstruct 
    source location in the sky 30 

t
Livingston

 

t
Hanford

 

t
Virgo

 SOURCE 

GHOST 

IFO 
Pair 

∆t max 
(ms) 

V-H 27.20 

V-L 26.39 

H-L 10.00 



A network of interferometric detectors 

31 

LIGO Hanford 
Washington State, USA 

LIGO Livingston 
Louisiana, USA 

Virgo Cascina (near Pisa), Italy 



Exploiting multi-messenger information 
Transient GW events are energetic 
    Only (a small) part of the released energy is converted into GW 
      → Other types of radiation released: electromagnetic waves and neutrinos  
 

 Astrophysical alerts ⇒ tailored GW searches 
    Time and source location known ; possibly the waveform  
      → Examples: gamma-ray burst, type-II supernova 
    

 GW detectors are also releasing alerts to a worldwide network of telescopes 
    Agreements signed with ~75 groups – 150 instruments, 10 space observatories 
 
 
 
 
 
 
 
 
 Low latency h-reconstruction and data transfer between sites 
    Online GW searches for burst and compact binary coalescences 32 



From Virgo to 
Advanced Virgo 
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From initial to advanced detectors 
 Goal: to improve the sensitivity by one order of magnitude 
    Volume of observable Universe multiplied by a factor 1,000 
    Rate should scale accordingly 
      → Assuming uniform distribution of sources (true at large scale) 
 
 A wide range of improvements  
    Increase the input laser power 
    Mirrors twice heavier 
    Increase the beamspot size on the end mirrors 
    Fused silica bonding to suspend the mirrors 
    Improve vacuum in the km-long pipes 
    Cryotraps at the Fabry-Perot ends 
    Instrumentation & optical benches 
      under vacuum 
 
 Advanced LIGO (aLIGO) funded a year or so before Advanced Virgo (AdV) 
    Financial crisis in 2008-2010… 
   → aLIGO ready for its first « observation run » in September 2015 
    AdV upgrade still in progress 34 



The Advanced Virgo design 
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               Mirrors 
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 SiO2 substrates produced by Heraeus 
 Coating in monoatomic layers performed 
   at LMA (CNRS, Lyon)  
 

 Weight: few tens of kg, for a 35 cm diameter 
 

 Reflectivity set with an accuracy better than 0.1% 
 Few ppm losses @ 1064 nm (nominal laser wavelength) 
 Flatness below the nm over a 150 mm diameter 
 Radius of curvature around 1500 m 
  (half the long cavity length), accurate within a few meters 
 Production completed on schedule 
 

 Mirror measurements better than requirements 
    Less aberrations and scattered light 
 

 Measured mirror maps included in Virgo 
   simulations to predict the IFO behavior 
 

 SiO2 « ears » attached to the mirrors using 
   an innovative silicate bonding technique  



Low and medium frequency range improvements 
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 Suspension and mirror thermal noises 
    Doubling the mirror weight (42 kg) 
      → Noise scales like 1/√mass 
    Mirrors suspended with fused silica fibers 
      → Smaller losses 
    Enlarging the beam size on the mirrors 
      → Moving the beam waist close 
           to the center of the long cavities 
      → Larger vacuum links & beamsplitter 
    New low-dissipation mirror coatings 
 

 Lowering the residual gas noise 
    Cryotraps at 77 K in between 
      the towers and the 3 km-long tubes 
 

 Limiting environmental noise 
    Photodiodes under vacuum on 
      suspended benches 
    New baffles to fight stray light 

 Fused silica fibers 
    400 µm ∅ 
    70 cm length 
    Twice the steel 
      breaking strength 
    Only 4 / mirror 



High frequency range improvements 
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 Higher laser power 
    125 W in the final configuration 
   → New laser system 
 

 Higher finesse in the Fabry-Perot cavities 
    Gain ~ 300: up to 700 kW stored 
   → Very high-quality optics 
   → Improved Thermal Compensation System (TCS) 
 

 Signal recycling mirror to be added later 
   in front of the dark port 
    Improve and shape the sensitivity curve in a 
      given frequency band (tuning for specific sources) 
           Mirror reflectivity ↔ Bandwidth 
      Microscopic position ↔ Resonance frequency 
    Additional cavity to control 
 

 DC detection at the dark port 
   → New suspended optical benches 

Signal 
recycling 

mirror 

TCS components: 
ring heaters (RH) + 
CO2 laser heating 

compensation 
plates (CP) 



Sensitivity improvement 
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 A multi-step process 
 
 
 
 
 
 
 
 
 
 
 
 Quantum noise dominant at low (radiation pressure) & high (shot noise) frequencies 
   → R&D ongoing on frequency-dependent light squeezing 
 Coating thermal noise dominant in between 
 
 Low frequency sensitivity ultimately limited by Newtonian noise 
    Stochastic gravitational field induced by surface seismic waves 
      → Either active cancellation or go underground 
 



Advanced Virgo status 
 Integration phase nearing completion 
   A few months delay due to two main issues 
     → 13 (out of ~300) superattenuator blades found broken 
     → 3 monolithic suspension failures after a few days under vacuum 
 
 Broken blades  
    Origin of the problem found 
    Risky blades (40%) identified and replaced preventively 
      → Superattenuator completion delayed by a few months 
    Additional spare production 
    Procedure defined for fast in-situ replacements 
 
 Monolithic suspension failures 
    Likely due to a production issue in a bunch of silica anchors 
    New (more robust) anchor design 
    New procedure defined to evacuate the towers 
      → One monolithic payload under vacuum for more than a month 
      → One mirror suspended with metal wires; two others not suspended yet 
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Advanced Virgo status 
 What is currently missing 
    All the other mirrors 
      in place for months 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Still some less crucial equipments to be installed 
    Parallel to the commissioning activities 41 

Suspended with 
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configuration 
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(in final configuration) 

Dummy mirror 



Advanced Virgo status 
 All towers closed in the central building since last month 
 
 
 
 
 
 
 
 
 
 
 
 
 

 All detection benches installed 
 
 All cryotraps cooled down 
 
 Commissioning of the injection system completed 42 



Advanced Virgo status 
 First lock of a cavity: power recycling → north input mirror 
 
 
 
 
 
 
 
 
 
 
 
 
    Sensitivity: only 8 orders of magnitude to go… 
    But: cavity locked with upgraded superattenuators, new payload design, 
              new control electronics, digital demodulation, 
              new acquisition/locking software, use of ring heater… 
   → Nice integration test! 
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Advanced Virgo status 
 Seeing the (laser) light at the end of the (3-km long) tunnel(s)!?  
 
 
 
 
 
 
 
 
 
 
 

 
May 5: north end mirror payload hit by a direct beam coming from the 

injection system shortly after having opened the long arm vacuum valve 
 

→ Transition from integration-dominated phase to commissioning 
 

 Goal is still to join LIGO for the 2nd Observation Run (O2, end of 2016) 
44 



Improving the sensitivity: a long-term job 
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 Example of initial Virgo (2003-2011) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Advanced LIGO detectors reached a record sensitivity much faster (< 1 year) 
    Experience gained and lessons learned from the first generation interferometers 
    Still room for improvement to reach the design sensitivity – and exceed it! 



The Advanced LIGO 
«Observation 1» Run 
(2015/09 – 2016/01) 

& 
GW 150914   
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aLIGO O1 Run: Observing time 
 September 2015 – January 2016 
    GW150914 showed up a few days before the official start of O1, 
      during the « Engineering Run 8 » 
   → Both interferometers were already working nominally 
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aLIGO O1 Run: Sensitivity 
 Sensitiviy much improved with respect to the initial detectors 
    Factor 3-4 in strain 
      → Factor 30-60 in volume probed 
 

 Gain impressive at low frequency – where the signal GW150914 is located  
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aLIGO O1 Run: GW150914-like horizon 
 Sky-averaged distance up to which a given signal can be detected 
    In this case a binary black hole system with the measured GW150914 parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Only depends on the actual sensitivity of the interferometer 
    Online monitoring tool used during data taking 
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aLIGO O1 Run: “VT” figure of merit 
 Cumulative time-volume probed by the instruments 
   → Expected number of sources (given a model) 
    Unit: Mpc3.year  
    This slide: 1.4-1.4 M « standard » 
      binary neutron star system case 
 
 Mixes sensitivity and duty cycle information  
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 Detector configuration frozen to integrate enough data for background studies 
    ~40 days (until end of October) corresponding to 16 days of coincidence data 
   → Steady performances over that period 
 

 Tens of thousands of probes monitor the  
   interferometer status and the environment 
    Virgo:    h(t) ~ 100 kB/s 
                 DAQ ~ 30 MB/s 
 

 Help identifying couplings 
   with GW channel  
    Quantify how big a disturbance should 
      be to produce such a large signal 
    Not to mention the distinctive shape 
      of the GW150914 signal 
 

 Extensive studies performed 
    Uncorrelated and correlated noises 
    Bad data quality periods identified and vetoed 
   → Clear conclusions:  nominal running, no significant environmental disturbance 

Data quality 
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GW150914 signal strong enough to be visible ‘by eyes’ on spectrograms 

Hanford Livingston 

 Search for clusters of excess power (above detector noise) in time-frequency plane 
    Wavelets 
 
 
 
 
 
 
 
 
 
 

 Chirp-like shape: frequency and amplitude increasing with time 
 
 Coherent excess in the two interferometers 
    Reconstructed signals required to be similar 
 
 Efficiency similar to (optimal) matched filtering for binary black hole – short signal 
    Online last September for O1 

Burst search 
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Rapid response to GW150914 
 2015/09/14 11:51 CET: event recorded – first in Livingston, 7 ms later in Hanford 
 

 3 minutes later : event flagged, entry added to database, contacts notified  
    Online triggers important in particular for searches of counterparts 
 

 1 hour later: e-mails started flowing within the LIGO-Virgo collaboration 
 
 
 
 
 
 20 minutes later: no signal injected at that time 
    Confirmed officially at 17:59 that day – blind injections useful to test pipelines 
 

 10 minutes later: binary black hole candidate 
 

 25 minutes later: data quality looks OK in both IFOs at the time of the event 
 

 15 minutes later: preliminary estimates of the signal parameters 
    False alarm rate < 1 / 300 years: a significant event! 
 

 Two days later (09/16, 14:39 CET): alert circular sent to follow-up partners 53 



Why two black holes? 
 Result of matched filtering! 
    Excellent match between 
      the best template and the 
      measured signal 
 

 Two massive compact objects 
   orbiting around each other at 
   75 Hz (half the GW frequency), 
   hence at relativistic speed, 
   and getting very close before 
   the merging: only a few RS away! 
     

→ Black holes are the only 
     known objects which can 
     fit this picture  
   

 About 3 MSun radiated in GW 
 

 The « brighest » event ever seen 
    More powerful than any gamma-ray burst detected so far 
    Peak power larger than 10 times the power emitted by the visible Universe 54 



Skymap 
 Sky at the time of the event 
 
 Skymap contoured in 
   deciles of probability 
 
 90% contour : 
   ~ 590 degres2  
 
 View is from the South 
    Atlantic Ocean, North at 
    the top, with the Sun rising 
    and the Milky Way 
    diagonally from NW to SE 
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Looking for 
GW150914 

counterparts  Sky coverage 
 
 
 
 
 
 
 
 
 

 Observation timeline: no counterpart found – none expected for a binary black hole  
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Conclusions 
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Outlook 
 The network of advanced gravitational wave interferometers is taking shape 
    The two aLIGO detectors started taking data last September and detected 
      the first direct gravitational wave signal (GW150914) 
    Virgo is completing its upgrade and is fully committed to joining LIGO asap 
       → The right time for new groups to join the collaboration… 
    KAGRA should then join the network in 2018 
    And possibly a third LIGO detector (LIGO-India) some years later 
 
 Sensitivity already good enough to detect gravitational waves  
    Improvements expected in the coming years 
    R&D activities already ongoing for 3rd generation instruments 
 
 LIGO and Virgo will release results from the full 
   « Observation 1 » run analysis in the coming weeks 
    Stay tuned… 
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GW detector peak sensitivity evolution vs. time 
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Resonant bars 
Interferometers 
Future 
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