

Harvester

Tadashi Maeno (BNL)

2

Outline

➢ Motivation
➢ Design
➢ Workflows
➢ Plans

3

Motivation 1/2
➢ PanDA currently relies on server-pilot paradigm

– PanDA server maintains state and manages workflows
with various granularities, such as task, job, and event

– Pilots are job-centric and independently run on worker
nodes (WNs) with limited view of local resource

➢ Works well for the grid with 250k cores 24x7 as
underlying resources are not very heterogeneous
– But missing capability to dynamically optimize resource

allocation among queues (score, mcore, himem, long, ...)
➢ Not very well for HPC or large-scale clouds

– Each HPC has a different edge service and operational
policy, leading to over-stretched pilot architecture and
incoherence in implementation at different HPCs

– PanDA itself has no means of managing and monitoring
cloud utilization by using native cloud API which is far
more optimal than that of an intermediate service like
condor

4

Motivation 2/2
➢ New model : server-harvester-pilot

– Harvester is a resource-facing service between
PanDA server and collection of pilots

– Stateless service with knowledge of resource
– Modular design for different resource types
– Many harvester instances running in parallel
– To provide a single view of a large or uniform

resource that optimizes pilot and/or workload
management

– To provide a commonality layer in bringing
coherence to HPC implementations

– Better integration with PanDA system for
various (new) workflows, such as job/event-level
late-binding and jumbo jobs

5

Design 1/2
➢ Details

https://docs.google.
com/document/d/1zVj9cSrFbWf7HRaqwr66yOfvJpit8VmiwGUpF5xQ
4vU/edit?usp=sharing

➢ Key points
– Lightweigh

• To run on logon/edge nodes at HPC centers
– Stateless for scalability + central database

(oracle) + local database (sqlite3)
• Capability to rebuild the local database from the

central database for auto restart
• Local database to reduce redundant access to

the central database
• Only important checkpoints are propagated to

the central database
– Installation with or without root privilege

https://docs.google.com/document/d/1zVj9cSrFbWf7HRaqwr66yOfvJpit8VmiwGUpF5xQ4vU/edit?usp=sharing
https://docs.google.com/document/d/1zVj9cSrFbWf7HRaqwr66yOfvJpit8VmiwGUpF5xQ4vU/edit?usp=sharing
https://docs.google.com/document/d/1zVj9cSrFbWf7HRaqwr66yOfvJpit8VmiwGUpF5xQ4vU/edit?usp=sharing
https://docs.google.com/document/d/1zVj9cSrFbWf7HRaqwr66yOfvJpit8VmiwGUpF5xQ4vU/edit?usp=sharing

6

Design 2/2
➢ Key points (cntd)

– Configurability
• To customize workflow for each resource
• To turn on/off components with various plugins

– Running on top of pilot API
• Core + plugins + resource specifics in resource

managers or pilot components
• Leveraging development effort for the pilot

consistently with the evolution plan (pilot 2.0)
– Direct bi-directional communication with PanDA

• Requesting workload to PanDA based on dynamic
resource availability information and static
configuration

• Receiving commands directly from PanDA to
throttle or boost the number of workers (worker =
pilot, MPI job, or VM)

7

Workflows 1/3
➢ Workflow example for HPC + network-less

WNs + conventional jobs + multiple workers
(one PanDA job ☓ one worker)
1. Fetch PanDA jobs
2. Stage-in input files
3. Check with the batch system to find
available slots
4. Make MPI jobs from PanDA jobs
5. Submit MPI jobs
6. Monitor MPI jobs and update PanDA job
status
7. Stage-out output and log files
8. Send final heartbeats

8

Workflows 2/3

➢ Workflow example for cloud + multiple
workers (one PanDA job ☓ one worker)
1. Request large workload to be assigned
2. Make a vanila image with the pilot
3. Spin up VMs with the image using cloud API
4. Send PanDA secret key(s) to them via
 contextualization
Then the pilot takes care of subsequent
procedures such as getting/updating job and
stage-in/out

9

Workflows 3/3
➢ Job level late-binding on HPC

– Currently for HPC, PanDA jobs are embedded
into workers (MPI jobs), workers are pushed to
the batch system, and then they get started
once CPUs become available

• Pre-binding of workload. I.e. cannot be reassigned
even if other resources become free

• Long latency if workers are in the batch queue for a
long time (e.g., a few days of latency on busy HPCs
like NERSC), which is problematic for high priority
tasks

– Synchronized communication is required
between Harvester and workers

• Feeding PanDA jobs to workers once they get CPUs
• Implementation details in the google doc

10

Jumbo Jobs 1/4
➢ New workflow. Details

https://docs.google.
com/document/d/11Xw4ee0VsxCyVKaxYoehu4xUHwomP6PO7zn7BWjAnc4/ed
it?usp=sharing

➢ HPC prefers large jobs to process a large number of events
in one go

➢ Possible to configure tasks to generate large jobs, but
– Difficult to run large jobs on traditional resources due to

limited number of cores and walltime per job, so that those
tasks can run only on HPCs and total amount of CPU resources
are limited

– Large jobs produce gigantic files since currently in PanDA one
job produces one file for each data type like AOD and ESD

– Gigantic files are not good if they are used by subsequent
tasks since not all production steps use direct IO when
reading files

– Mixture of small and gigantic files in a dataset makes
subsequent tasks complicated when the dataset is used as
input, e.g. for pileup

https://docs.google.com/document/d/11Xw4ee0VsxCyVKaxYoehu4xUHwomP6PO7zn7BWjAnc4/edit?usp=sharing
https://docs.google.com/document/d/11Xw4ee0VsxCyVKaxYoehu4xUHwomP6PO7zn7BWjAnc4/edit?usp=sharing
https://docs.google.com/document/d/11Xw4ee0VsxCyVKaxYoehu4xUHwomP6PO7zn7BWjAnc4/edit?usp=sharing
https://docs.google.com/document/d/11Xw4ee0VsxCyVKaxYoehu4xUHwomP6PO7zn7BWjAnc4/edit?usp=sharing

11

Jumbo Jobs 2/4
➢ Goal

– A machinery to dynamically tailor workload based
on available CPU cores for each resource and at
the same time to have a constant or similar number
of events in each output file

➢ Implementation
– A single jumbo job can process all events in a task
– One or more jumbo jobs are defined for one task

to be assigned to HPC sites
– At the same time, normal jobs (co-jumbo jobs) are

defined with reasonable number of events per job
(e.g. 1000 events per job) to be assigned to
conventional grid sites

– Workers run jobs, and get events once they get
CPUs

12

Jumbo Jobs 3/4
➢ Implementation (cntd)

– Each event can be processed by one worker either
with jumbo job or co-jumbo job, but once the event
is processed by a worker other workers will not
process the event again

– Tasks can progress even if HPC workers are waiting
in long queues since co-jumbo jobs can process
events meanwhile

– Each co-jumbo job generates output file(s) once all
events assigned to the job are processed

13

Jumbo Jobs 4/4
➢ Status

– Server side functions have been implemented
– Some thoughts are still required for accounting and

logs
– No pilot scheduler or HPC pilots support jumbo jobs yet

➢ Jumbo jobs + late-binding
– Jumbo jobs can mitigate the issue with pre-binding of

workload due to co-jumbo jobs
– Late-binding is still useful with jumbo jobs since high

priority jobs can jump over low priority jobs
– HPC could be well integrated in normal production

activities using jumbo jobs + late-binding
➢ Jumbo jobs for cloud

– Jumbo jobs are also useful for large-scale provisioning
of workers on clouds since a single jumbo job can be
processed by multiple workers

14

Plans
➢ Manpower

– Core components : Tadashi + Fernando
– Plugins for cloud : Fernando
– Plugins for HPC : Experts for each HPC workflow from pilot

team
➢ First focus on HPC and large-scale cloud
➢ Prototype

– Core components with limited functions and one set of
concrete plugins

– The primary target is HPC (Titan or NERSC) + network-less
WNs + multiple jumbo jobs

• Not a toy but beneficial to bring HPC resources to the normal
production without custom tasks or human interventions

– Timeline
• ~ after CHEP

➢ Github repository
– https://github.com/PanDAWMS/panda-harvester

➢ Start with pilot 1.0 and then refactor plugins with pilot 2.0

