
Philippe Canal (FNAL) for the GeantV development team

G.Amadio (UNESP), Ananya (CERN), J.Apostolakis (CERN) , A.Arora (CERN), M.Bandieramonte (CERN),

A.Bhattacharyya (BARC), C.Bianchini (UNESP), R.Brun (CERN), Ph.Canal (FNAL), F.Carminati (CERN),

L.Duhem (intel), D.Elvira (FNAL), A.Gheata (CERN), M.Gheata (CERN), I.Goulas (CERN), F.Hariri (CERN),

R.Iope (UNESP), S.Y.Jun (FNAL), H.Kumawat (BARC), G.Lima (FNAL), A.Mohanty (BARC), T.Nikitina

(CERN), M.Novak (CERN), W.Pokorski (CERN), A.Ribon (CERN), R.Sehgal (BARC), O.Shadura (CERN),

S.Vallecorsa (CERN), S.Wenzel (CERN), Y.Zhang (CERN)

GeantV – From CPU to accelerators

Outline

 GeantVectorized – an introduction

 Challenges, ideas, goals

 Main components and performance

 Design and infrastructure

 Vectorization: overheads vs. gains

 Geometry library

 Physics processes

 Performance benchmarks

 Results, milestones, plans

2

 Event level Parallelism
 Each thread processes one full event

exclusively

 Part of Geant4 since release 10.0, Dec.

2013

3

Preliminary, Courtesy of A.Dotti, SLAC

 Demonstrates

 Linear scaling of

throughput with number of

threads

 Large savings in memory:

9MB extra memory per

thread

 No Performance/Throughput

increase

Geant4 Multi-threading

Hardware constraints and promised

paths

4

Reality is that refactoring effort towards multi-level parallelism goes way beyond the usage of specific
software tools and the effort and end result depend significantly on the workload and design.

Intel® Many Integrated Core

Architecture (MIC - KNL)

2016

What do we want to do?

 Develop an all-particle transport simulation software
with

 Geant4 or new improved (where possible) physics
models

 A performance between 2 and 5 times greater than
Geant4

 Full simulation and various options for fast
simulation

 Portable on different architectures, including
accelerators (GPUs and Xeon Phi’s)

 Understand the limiting factors for a one-order-of-
magnitude (10x) improvement

5

The ideas

 Transport particles in groups (vectors)
rather than one by one

 Group particles by geometry volume or
same physics

 No free lunch: data gathering
overheads needs to stay less than
vector gains

 Dispatch SoA to functions with vector
signatures

 Use backends to abstract interface:
vector, scalar

 Use backends to insulate
technology/library: Vc, Cilk+, VecMic,
…

 Redesign the library and workflow to target
fine grain parallelism

 CPU, GPU, Phi, Atom, …

 Aim for a 3x-5x faster code, understand
hard limits for more 6

HEP transport is mostly local !

7

ATLAS volumes sorted by transport time. The same

behavior is observed for most HEP geometries.

50 per cent of

the time spent in
50/7100 volumes

• Locality not exploited by

the classical transport

• Existing code inefficient

(0.6-0.8 IPC)

• Cache misses due to

fragmented code

Scheduler

Geometry
navigator

Geometry
algorithms

Physics

Basket of

tracks

Basket of

tracks

x-sections

Reactions

Dispatching
MIMD

SIMD

The initial ideas sounded

easy

8

Challenges

 Overhead from reshuffling particle lists should not offset SIMD
gains

 Exploit the hardware at its best, while maintaining portability

 Test from the onset on a “large” setup (LHC-like detector)

 Toy models tell us very little – complexity is the problem

9

Scheduler

CPU GPU Phi XXXAtom

Status on GPU

 Broker adapts baskets to the coprocessor

 Selects tracks that are efficiently processed on coprocessor

 Gather in chunk large enough (e.g. 4096 tracks on NVidia K20)

 Transfer data to and from coprocessor

 Execute kernels

 On NVidia GPU, we are effectively using implicit vectorization

 Rather than one thread per basket, on GPUs we use 4096 threads
each processing one of the tracks in the basket

 Cost of data transfer is mitigated by overlapping kernel
execution and data transfer

 We can send fractions of the full GPU's work asynchronously
using streams

10

Geometry - VecGeom

11

• Geometry takes 30-40%

CPU time of typical

Geant4 HEP Simulation

• A library of vectorised

geometry algorithms to

take maximum advantage

of SIMD architectures

• Substantial performance

gains also in scalar mode

Better scalar
code

Geometry performance on KNL

 Running set of standard geometry
benchmarks using UME::SIMD
backend.

 Measuring vector versus scalar
speed-up using AVX2 and AVX512,
for CPU-intensive geometry
navigation methods

 Observe super-linear speedup for
some methods

 Investigating if it is compiler-related

 Vector interface is better than scalar
one (~x2 factor) w/o auto-vectorization

 Found ~10% scalar performance
improvement on KNL switching off
auto-vectorization and setting different
ISA options (AVX512 vs AVX2)

0.0

1.8

3.5

5.3

7.0

Inside SafetyToIn DistanceToIn

S
p
e
e
d
u
p

scalar vector

BOX, AVX2 (KNL)

0

4.5

9

13.5

18

Inside SafetyToIn DistanceToIn

S
p

e
e

d
u

p

scalar vector

BOX, AVX512

(KNL)

12

Intel® Xeon Phi™ CPU 7210 @

1.30GHz, 64 cores

Evolution

 VecGeom code has been developed for GeantV vectorised

transport

 USolids was developed to unify TGeo and Geant4 geometry

packages

 Now VecGeom algorithms are retrofitted to USolids and are

available both to Geant4 and to TGeo

 VecGeom has the potential to introduce a few percent gain for

Geant4 (to be verified)

 Algorithm improvement and (internal) vectorisation of some shapes

 VecGeom is the consolidation both on the algorithm level and on

the developer level of G4-Geo, TGeo, USolid and Vectorization

efforts. 13

One becomes two, two becomes three,

and out of the third comes the one as the

fourth. Maria Prophetissa (3rd century AD)

Portability

 Long-term maintainability of
the code

 write one single version of
each algorithm and to
specialise it to the platform
via template programming
and low level optimised
libraries (Vc in our case)

 A Xeon Phi specific
backend is being developed
in collaboration with
CERN’s openlab
(UME::SIMD)

 Results are quite
encouraging: maybe
portable HPC is NOT an
oxymoron after all… http://code.compeng.uni-frankfurt.de/projects/vc

template<class Backend>
Backend::double_t
common_distance_function(
Backend::double_t input)
{

// Algorithm using Backend types
}

struct VectorBackend
{

typedef Vc::double_v double_t;
typedef Vc::bool_v bool_t;
static const bool IsScalar=false;
static const bool IsSIMD=true;

};

1 particle API Many particle
API (SIMD)

Common C++
template functions

Vc::double_v distance(Vc::double_v);double distance(double);

“Backend” is a (trait) struct encapsulating standard
types/properties for “scalar, vector, CUDA”
programming; makes information injection into
template function easy

struct ScalarBackend
{

typedef double double_t;
typedef bool bool_t;
static const bool IsScalar=true;
static const bool IsSIMD=false;

};

14

http://code.compeng.uni-frankfurt.de/projects/vc

Avoiding code duplication

● Support of multiple platforms
usually means multiple
versions of source code

● What are the differences
between the two versions of
code shown on the right?

● Primarily: types and their
operators, function attributes
(__device__), also some higher
level functions, e.g. conditional
assignment

● Avoid code duplication by
abstracting away differences
into common types or
overloaded functions defined
in trait structures.

cuda

Vc

15

Using traits to avoid code duplication

● Intensive kernels are

developed in a generic way,

using only trait-defined types

and functions.

● Architecture-specific traits are

created as needed, to

associate generic types and

functions with their arch-

specific types.

● Appropriate backends are

requested by #define

backend/vc/Backend.h

backend/cuda/Backend.h

16

A generic kernel
The Backend, as discussed

MaskedAssign() is an optimized if() replacement

Arithmetics just works!

17

Geometry performance (Phi vs

Xeon)
 Geometry is 30-40% of the

total CPU time in Geant4

 A library of vectorized

geometry algorithms to take

maximum advantage of SIMD

architectures

 Substantial performance

gains also in scalar mode

 Testing the same also on

GPU

18

16

particles

1024

particles

SIMD

max

Intel Ivy-Bridge (AVX) ~2.8x ~4x 4x

Intel Haswell (AVX2) ~3x ~5x 4x

Intel Xeon Phi (AVX-512) ~4.1 ~4.8 8x

Overall performance for a simplified detector vs.
scalar ROOT/5.34.17

Vectorization performance for trapezoid shape
navigation (Xeon®Phi® C0PRQ-7120 P)

Geometry performance on K20

 Speedup for different navigation
methods of the box shape,
normalized to scalar CPU

 Scalar
(specialized/unspecialized)

 Vector

 GPU (Kepler K20)

 ROOT

 Data transfer in/out is
asynchronous

 Measured only the kernel
performance, but providing
constant throughput can hide
transfer latency

 The die can be saturated with
both large track containers,
running a single kernel, or with
smaller containers dynamically
scheduled.

 Just a baseline proving we can
run the same code on

19

The X-Ray benchmark

 The X-Ray benchmark tests
geometry navigation in a real
detector geometry

 X-Ray scans a module with virtual
rays in a grid corresponding to pixels
on the final image

 Each ray is propagated from
boundary to boundary

 Pixel gray level determined by
number of crossings

 A simple geometry example
(concentric tubes) emulating a
tracker detector used for Xeon©Phi
benchmark

 To probe the vectorized geometry
elements + global navigation as
task

 OMP parallelism + “basket”
model 20

OMP

threads

Vector performance

 Gaining up to 4.5 from
vectorization in basketized
mode

 Approaching the ideal
vectorization case (when no
regrouping of vectors is
needed)

 Vector starvation starts when
filling more thread slots than
the core count

 Performance loss is not
dramatic

 Better vectorization
compared to the Sandy-
Bridge host (expected)

 Scalar case: Simple loop over
pixels

 Ideal vectorization case: Fill
vectors with N times the same X-
ray

 Realistic (basket) case: Group
baskets per geometry volume

21

What about physics?

 Needed a “reasonable” shower development

 Developed a library of sampled interactions and tabulated x-

sections for GeantV

 Back ported to Geant4 for verification and comparison

 A quick tool for developing realistic showers

 Potentially for developing into a fast simulation tool

22

G4 example N03 vs tabulation
(simple calo with many slabs)

23

profile

histos

FTFP-BERT

Physics Performance

 Objective: a vector/accelerator friendly re-write of physics
code

 Started with the electromagnetic processes

 The vectorised Compton scattering shows good
performance gains

 Current prototype able to run an exercise at the scale of an
LHC experiment (CMS)

 Simplified (tabulated) physics but full geometry, RK
propagator in field

 Very preliminary results needing validation, but hinting
to performance improvements of factors

24

0

1

2

3

4

5

6

7

8

10 100 500 1000 5000 10000

S
p

e
e
d

u
p

Number of tracks

Speed-up on Xeon Phi(R) C0PRQ-7120
for Compton KN model compared to Geant4

T(Geant4)/T(Scalar)

T(Geant4)/T(Vector)

CMS Ecal

GeantV Output

 Physics simulation produces ‘hits’ i.e. energy depositions in the

sensitive parts of the detector

 Those hits are produced concurrently by all the simulation

(TransportTracks) threads

 Thread-safe queues have been implemented to handle asynchronous

generation of hits by several threads

 Dedicated Output thread transfers the data from the output queues to

ROOT I/O

Hits/digits I/O
 “Data” mode

 Send concurrently data to one
thread dealing with full I/O

26

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120

re
la

ti
v
e

 t
im

e
 o

v
e

rh
e

a
d

 w
rt

 n
o

 I
/O

Throughput [MB/s]

GeantV concurrent I/O

8 data producer threads + 1 I/O thread

Data I/O (old)

Buffer I/O (new)

 “Buffer” mode

 Send concurrently local trees
connected to memory files produced by
workers to one thread dealing with
merging/write to disk

 Integrating user code with a
highly concurrent framework
should not spoil performance

Yardstick: CMS With Tabulated

Physics

Realistic Scale Simulation

 pp collisions @ 14TeV minimum bias events produced by Pythia 8

 2015 CMS detector

 4T uniform magnetic field

 Decent approximation of the real
solenoidal field

 Low energy cut at 1MeV

 ‘Tabulated’ Physics

 Library of sampled interactions and
tabulated x-sections

 Same test (described above) run with both Geant4
and GeantV with various versions of the Geometry library.

27

Putting It All Together - CMS

Yardstick

Scheduler Geometry Physics Magnetic Field

Stepper

Geant4 only Legacy G4 Various Physics Lists
Various RK

implementations

Geant4 or

GeantV
VecGeom 2016 scalar

• Tabulated

Physics

• Scalar Physics

Code

• Helix

• Cash-Karp

Runge-Kutta

GeantV only

• VecGeom 2015

• VecGeom 2016 vector

• Legacy TGeo

Vector Physics

Code

Vectorized RK

Implementation

28

Semantic changes

Putting It All Together - CMS

Yardstick

Scheduler Geometry Physics Magnetic Field

Stepper

Geant4 only Legacy G4 Various Physics Lists
Various RK

implementations

Geant4 or

GeantV
VecGeom 2016 scalar

• Tabulated

Physics

• Scalar Physics

Code

• Helix (Fixed Field)

• Cash-Karp

Runge-Kutta

GeantV only

• VecGeom 2015

• VecGeom 2016 vector

• Legacy TGeo

Vector Physics

Code

Vectorized RK

Implementation

29

Semantic changes

Putting It All Together - CMS

Yardstick

 Some of the improvements can be
back ported to G4

 Overhead of basket handling is
under control

 Ready to take advantage of
vectorization throughout.

Improvement Factors (total) with respect to
G4

Legacy (TGeo) Geometry library:

 1.5  Algorithmic improvements in
infrastructure.

2015 VecGeom (estimate)

 2.4  Algorithmic improvements in
Geometry

Upcoming VecGeom (early result)

 3.3  Further Geometric algorithmic
improvements and some
vectorization

30

Next steps

 Repeat the test with the introduction of

 Vectorised EM physics

 Vectorised transport in Mag Field

 Develop simple classes for materials and particles to be able to run on
coprocessors to enable physics on the GPU and Xeon Phi full CMS yardstick

 … implementing a “preliminary performance yard-stick” combining all prototype
features

 SIMD gains in the full CMS experiment setup

 Coprocessor broker in action: part of the full transport kernel running on Xeon®Phi® and
GPGPU

 Scalability and NUMA awareness for rebasketizing procedure

 … achieving these just moves the target a bit further

 … testing scaling up to large node count through MPI, e.g. on CORI

 Input distribution and Output gathering.

31

Interaction with Frameworks

 Threading technology

 Currently using std::thread to steer ‘tasks’ (but no thread local storage).

 The number of threads used is configurable.

 Testing OpenMP/MPI to steer Xeon Phi in offload mode and with separate
processes.

 Exploring if we can benefit from TBB and how to best coordinate with other
uses

 Coprocessors

 GPU (and Xeon Phi) can be used optionally via plugin

 Enabling use of the coprocessor in offload mode will be done via a function call.

 Coprocessor sharing

 Number of CUDA threads and blocks used by GeantV is customizable

 Newer NVidia hardware support concurrent execution of independent kernels
(in addition to the queue mechanism that was supported for a very long time).

32

Interaction with Frameworks

 Events/Data in and out from Frameworks

 Still under design

 Input

 One or more initial particles coming from one or more events will be
passed on

 Output

 Upon completion of the propagation of all the particles for an event, a
call back will be made (CMSApplication::Digitize for example)

 Should find a way to recast this flow into one of the TBB task mechanism

 Memory handling

 Tied to the number of event in flight and the size of the output information

 High watermark used to trigger a reduction in number of events in flight to
limit memory usage to under the watermark

33

Engagement

 VecGeom alpha release ready to be tested as Geant4 geometry

update.

 Magnetic field code update will also eventually be available to Geant4

 VecCore can be used to develop technology agnostic vector code

 GeantV ready to get out of the laboratory

 Starting to think about/design interfaces for user actions, digitization, etc.

 Welcoming early stakeholders to start reviewing the interfaces needed for a

full application and develop more realistic tests and prototypes

34

Restating our case

 We developed the three main components

 A multithread scheduler to handle the particle baskets

 A vectorised geometry library and navigator

 A vectorised Compton scattering and a tabulated physics list

 Our results indicate that

 Basket handling introduces a minimal overhead

 SIMD gains half an order of magnitude in performance

 An optimistic prediction based on our results gives an improvement
factor beyond the 3.3 currently achieved on CPU

 GPU and Xeon Phi improvement factors are expected to be higher

We are on track with achieving our objectives (see slide 22, 2 to 5
speedup)

35

Thank you!

36

BACKUPS

37

transistors
clock

power
ILP

10-1

1

10

102

103

104

105

106

70 75 80 85 90 95 00 05 10

107

GeantV: (familiar) motivations

 Performance of our code scales
with clock cycle (hence is stagnant!)

 Needs will increase more than
tenfold and the budget will be
constant at best

 HEP code needs to exploit new
architectures and to team with other
disciplines to share the optimization
effort

 Data & instruction locality and
vectorisation

 Portability, better physics and
optimization will be the targets

 Simulation can lead the way to
show how to exploit today's CPU's
resources more effectively in
complex applications

• Seeking ways to write code portable

between CPU with vector units or not

and accelerators (GPU, Xeon Phi)

38

NUMA awareness

 Latency of memory access depends on
“locality distance”

 Libraries used:

 libnuma, numactl – NUMA memory &
thread affinity policies

 Developed by SUSE Labs & SGI

 Most linux flavors, LGPL license

 Portable Hardware Locality (hwloc) –
NUMA topology detection, API & tools

 Developed within Open MPI

 NewBSD license

 Layer on top of libnuma & libhwloc to
control affinity

DIMM 0 DIMM 1

L3

L2 L2

cp
u0

cp
u1

cp
u2

cp
u3

L1 L1 L1 L1

cp
u0

cp
u1

cp
u2

cp
u3

L1 L1 L1 L1

D
=

1
0

Tracks

Transp
ort

B
a

sk
e

ti
ze

r

0

Scheduler0

Tracks

Transp
ort

B
a

sk
e

ti
ze

r

1

Scheduler1

Tracks
Transp

ort

B
a

sk
e

ti
ze

r

2

Scheduler2

Tracks

Transp
ort

B
a

sk
e

ti
ze

r

3

Scheduler3

G
lo

b
a

l b
a

sk
e

ti
ze

r

39

NUMA aware GeantV

to be tested on KNL (SNC mode)

 Replicate schedulers on NUMA

clusters

 One basketizer per NUMA node

 2 supported modes

 MPI dispatch running one GeantV

process per NUMA node

 Single process spawning one

scheduler per NUMA node

 Loose communication between

NUMA nodes at basketizing

step

 Currently under development

Tracks

Transport

B
a

sk
e

ti
ze

r

0

Scheduler0

Tracks

Transport

B
a

sk
e

ti
ze

r

1

Scheduler1

Tracks

Transport

B
a

sk
e

ti
ze

r

2

Scheduler2

Tracks

Transport

B
a

sk
e

ti
ze

r

3

Scheduler3

G
lo

b
a

l b
a

sk
e

ti
ze

r

40

41

 High vectorization intensity achieved for both ideal and basketized

cases

 AVX-512 brings an extra factor of ~2 to our benchmark

AVX-512 versus AVX2 on KNL

0.01

0.1

1

10

0 75 150 225 300

A
b

s
o
lu

te
 t
im

e
s
 (

s
)

Nthreads

Vector ideal

AVX2 AVX512

1.60

1.70

1.80

1.90

2.00

2.10

2.20

0 75 150 225 300

T
(A

V
X

2
)/

T
(A

V
X

5
1
2

)

Nthreads

Vector ideal

Scalability on many-core

 Fine grain MT preventing
to scale to high number
of threads

 Issue for many core
architectures

 Split application in
(NUMA-aware) clusters
and use a common event
queue for workload
balancing

 Lightweight/no
interaction

 Memory friendly

 Possible to extend
across sockets, replacing
the concurrent queue
with an event server
using MPI channels

Lock-free algorithm

(memory polling)Algorithm using spinlocks

Rebasketizing

2x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Process

Process/threads

Process/threads

MPI
across
socke

ts

Events
queue

andrei.gheata@cern.ch : Experiences from

developing GeantV 42

Going CUDA – beyond writing custom

kernels

GeantV scheduler can communicate with arbitrary device brokers

 Getting work and processing in native mode or processing steps of work and sending
data back to the host

 Implemented so far: CUDA broker, KNC offload interface. KNL will work in native
mode

Host code instrumented

with __host__ __device__

macros

Instrumented methods

compiled in ::cuda

namespace

Library compiled for host

and device (nvcc)

GPU broker dealing with

initialization on device

and data copying

andrei.gheata@cern.ch : Experiences from

developing GeantV 43

Why not Geant4+?

 Extensive prototyping and analysis has convinced us that

“vectorisation” of Geant4 was not achievable without a major

rewrite of the code

 No hotspots (!)

 Virtual table structure very deep and complex (1990’s style)

 Codebase very large and non-homogeneous

 Auto-vectorization can only have small and very localized effect

 No criticism, but even the best things age (born 1994)

44

Geant4 Profiling Example: Call

Graph

45

valgrind / gprof2dot / graphviz
Geant4 example B1 with 100 protons

Geant4 Profiling Example: Call Map

46

valgrind / kcachegrind

No easy to address hotspots

“Basketised” transport

Deal with particles in parallel

Output buffer(s)

Particles are transported
per thread and put in
output buffers

A dispatcher thread puts
particles back into
transport buffers

Everything happens
asynchronously and
in parallel

The challenge is to
minimise locks

Keep long vectors

Avoid memory
explosion

47

Explicit vectorization

● Explicit SIMD vectorization

can be implemented directly

using intrinsics, but a

vectorization library already

brings many utilities pre-

defined, like common math

operators and functions.

● VecGeom currently works with

Vc library, by Mathias Kretz,

but other libraries can be

easily plugged in (Agner Fog's

VCL, Intel's VML, Cilk Plus,

…).

A new backend is maybe all

that is needed.

Physics developments: Multiple

Scattering

49

G4 precision

G4 fast

GV

Sandia data

Source: M.Novak

GeantV Multiple Scateeting

 The new algorithm is being

now vectorised for GeantV

 It is in an experimental

physics list for Geant4

 Candidate to become the

default

50

Physics validation

Up to 30% faster in scalar

Less charged steps (30%-50%)

The problem

Detailed simulation of subatomic particle
transport and interactions in detector
geometries

Using state of the art physics models,
propagation in electromagnetic fields in
geometries having complexities of
millions of parts

Heavy computation requirements,
massively CPU-bound, seeking
organically HPC solutions…

The LHC uses more than 50% of its
distributed GRID power for detector
simulations (~250.000 CPU years
equivalent so far)

51

http://atlas.ch

Geant4 Geometry

52

A large collection of solids are defined in Geant4:

G4Cons

G4Tubs

G4Polycone, G4 Polyhedra, G4Hype,

G4TwistedTubs, G4TwistedTrap

Also Boolean

operations such as:

Geant4 Transportation

53

The G4Track information is updated after every G4Step

 A G4Step is a step in the particle (track) propagation

 The user defines a maximum step length but steps also end

when a physics process is invoked and at volume boundaries

A G4Track also includes the info for transporting the particle
through the detector  in G4 we typically use Particle = Track

T2-T8
(secondar
y tracks)

Tracking follows
“last in first out” rule:
T1->T4->T3->T6->T7 -
>T5->T8->T2

Geant4 Magnetic Field

54

Particle propagated in EM field by integration of equation of
motion using the Runge-Kutta method (others also available)

 Curved path broken into linear chord segments to minimize the

sagitta (maximum chord-trajectory distance)

 Chords used to interrogate navigator on whether the track has

crossed a volume boundary

 miss distance parameter used to tune volume intersection

accuracy

G4 supports user defined, uniform, and non-uniform (static or

time dependent) magnetic fields

Specialized Geometry Library.

 Backward compatibility with ROOT and Geant4

 Continue the already started AIDA USolids project

 Numerical simulation have special requirements on numerical stability (double vs
float, no leaks, we transport things across boundaries often not the case in 3D
graphics engines)

 HEP use specialized volumes not existing in external packages (polycone) and we
can put a lot of domain specific knowledge to accelerate things

 Single solution for CPU and GPU

 Rely on special functions "safety" which might not exist in classical 3D rendering
engines (which concentrate on hit detection)

 Need an exact volume representation (and not a triangle approximation).

 Different scale than most 3D graphics engines (that often have far fewer things to
treat) 55

