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Outline

 GeantVectorized – an introduction

 Challenges, ideas, goals

 Main components and performance

 Design and infrastructure

 Vectorization: overheads vs. gains

 Geometry library

 Physics processes

 Performance benchmarks 

 Results, milestones, plans
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 Event level Parallelism
 Each thread processes one full event 

exclusively

 Part of Geant4 since release 10.0, Dec. 

2013

3

Preliminary, Courtesy of A.Dotti, SLAC

 Demonstrates

 Linear scaling of 

throughput with number of 

threads 

 Large savings in memory: 

9MB  extra memory per 

thread

 No Performance/Throughput 

increase

Geant4 Multi-threading



Hardware constraints and promised 

paths

4

Reality is that refactoring effort towards multi-level parallelism goes way beyond the usage of specific 
software tools and the effort and end result depend significantly on the workload and design.

Intel® Many Integrated Core 

Architecture (MIC - KNL)

2016



What do we want to do?

 Develop an all-particle transport simulation software 
with

 Geant4 or new improved (where possible) physics 
models

 A performance between 2 and 5 times greater than 
Geant4

 Full simulation and various options for fast 
simulation

 Portable on different architectures, including 
accelerators (GPUs and Xeon Phi’s)

 Understand the limiting factors for a one-order-of-
magnitude (10x) improvement

5



The ideas

 Transport particles in groups (vectors) 
rather than one by one

 Group particles by geometry volume or 
same physics

 No free lunch: data gathering 
overheads needs to stay less than 
vector gains

 Dispatch SoA to functions with vector 
signatures

 Use backends to abstract interface: 
vector, scalar

 Use backends to insulate 
technology/library: Vc, Cilk+, VecMic, 
… 

 Redesign the library and workflow to target 
fine grain parallelism

 CPU, GPU, Phi, Atom, …

 Aim for a 3x-5x faster code, understand 
hard limits for more 6



HEP transport is mostly local !

7

ATLAS volumes sorted by transport time. The same 

behavior is observed for most HEP geometries.

50 per cent of 

the time spent in 
50/7100 volumes

• Locality not exploited by 

the classical transport

• Existing code inefficient 

(0.6-0.8 IPC)

• Cache misses due to 

fragmented code



Scheduler

Geometry 
navigator

Geometry 
algorithms

Physics

Basket of 

tracks

Basket of 

tracks

x-sections

Reactions

Dispatching
MIMD

SIMD

The initial ideas sounded 

easy
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Challenges

 Overhead from reshuffling particle lists should not offset SIMD 
gains

 Exploit the hardware at its best, while maintaining portability

 Test from the onset on a “large” setup (LHC-like detector)

 Toy models tell us very little – complexity is the problem

9

Scheduler

CPU GPU Phi XXXAtom



Status on GPU

 Broker adapts baskets to the coprocessor

 Selects tracks that are efficiently processed on coprocessor

 Gather in chunk large enough (e.g. 4096 tracks on NVidia K20)

 Transfer data to and from coprocessor

 Execute kernels

 On NVidia GPU, we are effectively using implicit vectorization

 Rather than one thread per basket, on GPUs we use 4096 threads 
each processing one of the tracks in the basket

 Cost of data transfer is mitigated by overlapping kernel 
execution and data transfer

 We can send fractions of the full GPU's work asynchronously 
using streams

10



Geometry - VecGeom

11

• Geometry takes 30-40% 

CPU time of typical 

Geant4 HEP Simulation

• A library of vectorised

geometry algorithms to 

take maximum advantage 

of SIMD architectures

• Substantial performance 

gains also in scalar mode

Better scalar
code



Geometry performance on KNL

 Running set of standard geometry 
benchmarks using UME::SIMD 
backend.

 Measuring vector versus scalar 
speed-up using AVX2 and AVX512, 
for CPU-intensive geometry 
navigation methods

 Observe super-linear speedup for 
some methods

 Investigating if it is compiler-related

 Vector interface is better  than scalar 
one (~x2 factor) w/o auto-vectorization

 Found ~10% scalar performance 
improvement on KNL switching off 
auto-vectorization and setting different 
ISA options ( AVX512 vs AVX2) 
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Intel® Xeon Phi™ CPU 7210 @ 

1.30GHz, 64 cores



Evolution

 VecGeom code has been developed for GeantV vectorised

transport 

 USolids was developed to unify TGeo and Geant4 geometry 

packages

 Now VecGeom algorithms are retrofitted to USolids and are 

available both to Geant4 and to TGeo

 VecGeom has the potential to introduce a few percent gain for 

Geant4 (to be verified)

 Algorithm improvement and (internal) vectorisation of some shapes 

 VecGeom is the consolidation both on the algorithm level and on 

the developer level of G4-Geo, TGeo, USolid and Vectorization

efforts. 13

One becomes two, two becomes three, 

and out of the third comes the one as the 

fourth. Maria Prophetissa (3rd century AD)



Portability

 Long-term maintainability of 
the code

 write one single version of 
each algorithm and to 
specialise it to the platform 
via template programming 
and low level optimised 
libraries (Vc in our case)

 A Xeon Phi specific 
backend is being developed 
in collaboration with 
CERN’s openlab
(UME::SIMD)

 Results are quite 
encouraging: maybe 
portable HPC is NOT an 
oxymoron after all… http://code.compeng.uni-frankfurt.de/projects/vc

template<class Backend>
Backend::double_t 
common_distance_function( 
Backend::double_t input )
{

// Algorithm using Backend types
}

struct VectorBackend
{

typedef Vc::double_v double_t;
typedef Vc::bool_v bool_t;
static const bool IsScalar=false;
static const bool IsSIMD=true;

};

1 particle API Many particle 
API (SIMD)

Common C++ 
template functions

Vc::double_v distance( Vc::double_v );double distance( double );

“Backend” is a (trait) struct  encapsulating standard 
types/properties for “scalar, vector, CUDA” 
programming; makes information injection into 
template function easy

struct ScalarBackend
{

typedef double double_t;
typedef bool   bool_t;
static const bool IsScalar=true;
static const bool IsSIMD=false;

};

14
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Avoiding code duplication

● Support of multiple platforms 
usually means multiple 
versions of source code

● What are the differences 
between the two versions of 
code shown on the right?

● Primarily: types and their 
operators, function attributes 
(__device__), also some higher 
level functions, e.g. conditional 
assignment

● Avoid code duplication by 
abstracting away differences 
into common types or 
overloaded functions defined
in trait structures.

cuda

Vc

15



Using traits to avoid code duplication

● Intensive kernels are 

developed in a generic way, 

using only trait-defined types 

and functions.

● Architecture-specific traits are 

created as needed, to 

associate generic types and 

functions with their arch-

specific types.

● Appropriate backends are 

requested by #define

backend/vc/Backend.h

backend/cuda/Backend.h

16



A generic kernel
The Backend, as discussed

MaskedAssign( ) is an optimized if( ) replacement

Arithmetics just works!

17



Geometry performance (Phi vs

Xeon)
 Geometry is 30-40% of the 

total CPU time in Geant4

 A library of vectorized

geometry algorithms to take 

maximum advantage of SIMD 

architectures

 Substantial performance 

gains also in scalar mode

 Testing the same also on 

GPU

18

16 

particles

1024 

particles

SIMD 

max

Intel Ivy-Bridge (AVX) ~2.8x ~4x 4x

Intel Haswell (AVX2) ~3x ~5x 4x

Intel Xeon Phi (AVX-512) ~4.1 ~4.8 8x

Overall performance for a simplified detector vs. 
scalar ROOT/5.34.17

Vectorization performance for trapezoid shape 
navigation (Xeon®Phi® C0PRQ-7120 P)



Geometry performance on K20

 Speedup for different navigation 
methods of the box shape, 
normalized to scalar CPU

 Scalar 
(specialized/unspecialized)

 Vector

 GPU (Kepler K20)

 ROOT

 Data transfer in/out is 
asynchronous

 Measured only the kernel 
performance, but providing 
constant throughput can hide 
transfer latency

 The die can be saturated with 
both large track containers, 
running a single kernel, or with 
smaller containers dynamically 
scheduled.

 Just a baseline proving we can 
run the same code on 

19



The X-Ray benchmark

 The X-Ray benchmark tests 
geometry navigation in a real 
detector geometry

 X-Ray scans a module with virtual 
rays in a grid corresponding to pixels 
on the final image

 Each ray is propagated from 
boundary to boundary 

 Pixel gray level determined by 
number of crossings

 A simple geometry example 
(concentric tubes) emulating a 
tracker detector used for Xeon©Phi 
benchmark

 To probe the vectorized geometry 
elements + global navigation as 
task

 OMP parallelism + “basket” 
model 20

OMP 

threads



Vector performance

 Gaining up to 4.5 from 
vectorization in basketized
mode

 Approaching the ideal 
vectorization case (when no 
regrouping of vectors is 
needed)

 Vector starvation starts when 
filling more thread slots than 
the core count

 Performance loss is not 
dramatic 

 Better vectorization
compared to the Sandy-
Bridge host (expected)

 Scalar case: Simple loop over 
pixels

 Ideal vectorization case: Fill 
vectors with N times the same X-
ray

 Realistic (basket) case: Group 
baskets per geometry volume 

21



What about physics?

 Needed a “reasonable” shower development

 Developed a library of sampled interactions and tabulated x-

sections for GeantV

 Back ported to Geant4 for verification and comparison

 A quick tool for developing realistic showers

 Potentially for developing into a fast simulation tool

22



G4 example N03 vs tabulation
(simple calo with many slabs)

23

profile

histos
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Physics Performance

 Objective: a vector/accelerator friendly re-write of physics 
code 

 Started with the electromagnetic processes

 The vectorised Compton scattering shows good 
performance gains

 Current prototype able to run an exercise at the scale of an 
LHC experiment (CMS)

 Simplified (tabulated) physics but full geometry, RK 
propagator in field

 Very preliminary results needing validation, but hinting 
to performance improvements of factors

24
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GeantV Output

 Physics simulation produces ‘hits’ i.e. energy depositions in the 

sensitive parts of the detector

 Those hits are produced concurrently by all the simulation 

(TransportTracks) threads

 Thread-safe queues have been implemented to handle asynchronous 

generation of hits by several threads

 Dedicated Output thread transfers the data from the output queues to 

ROOT I/O



Hits/digits I/O
 “Data” mode

 Send concurrently data to one 
thread dealing with full I/O

26
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GeantV concurrent I/O

8 data producer threads + 1 I/O thread

Data I/O (old)

Buffer I/O (new)

 “Buffer” mode

 Send concurrently local trees 
connected to memory files produced by 
workers to one thread dealing with 
merging/write to disk

 Integrating user code with a 
highly concurrent framework 
should not spoil performance



Yardstick: CMS With Tabulated 

Physics

Realistic Scale Simulation

 pp collisions @ 14TeV minimum bias events produced by Pythia 8

 2015 CMS detector

 4T uniform magnetic field

 Decent approximation of the real
solenoidal field

 Low energy cut at 1MeV

 ‘Tabulated’ Physics

 Library of sampled interactions and 
tabulated x-sections

 Same test (described above) run with both Geant4 
and GeantV with various versions of the Geometry library.

27



Putting It All Together - CMS 

Yardstick

Scheduler Geometry Physics Magnetic Field 

Stepper

Geant4 only Legacy G4 Various Physics Lists
Various RK 

implementations

Geant4 or 

GeantV
VecGeom 2016 scalar

• Tabulated

Physics

• Scalar Physics 

Code

• Helix

• Cash-Karp

Runge-Kutta

GeantV only

• VecGeom 2015

• VecGeom 2016 vector

• Legacy TGeo

Vector Physics 

Code

Vectorized RK 

Implementation

28

Semantic  changes



Putting It All Together - CMS 

Yardstick

Scheduler Geometry Physics Magnetic Field 

Stepper

Geant4 only Legacy G4 Various Physics Lists
Various RK 

implementations

Geant4 or 

GeantV
VecGeom 2016 scalar

• Tabulated

Physics

• Scalar Physics 

Code

• Helix (Fixed Field)

• Cash-Karp

Runge-Kutta

GeantV only

• VecGeom 2015

• VecGeom 2016 vector

• Legacy TGeo

Vector Physics 

Code

Vectorized RK 

Implementation

29
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Putting It All Together - CMS 

Yardstick

 Some of the improvements can be 
back ported to G4

 Overhead of basket handling is 
under control 

 Ready to take advantage of 
vectorization throughout.

Improvement Factors (total) with respect to 
G4

Legacy (TGeo) Geometry library:

 1.5  Algorithmic improvements in 
infrastructure.

2015 VecGeom (estimate)

 2.4  Algorithmic improvements in 
Geometry

Upcoming VecGeom (early result)

 3.3  Further Geometric algorithmic 
improvements and some 
vectorization

30



Next steps

 Repeat the test with the introduction of

 Vectorised EM physics

 Vectorised transport in Mag Field

 Develop simple classes for materials and particles to be able to run on 
coprocessors to enable physics on the GPU and Xeon Phi full CMS yardstick

 … implementing a “preliminary performance yard-stick” combining all prototype 
features 

 SIMD gains in the full CMS experiment setup

 Coprocessor broker in action: part of the full transport kernel running on Xeon®Phi® and 
GPGPU

 Scalability and NUMA awareness for rebasketizing procedure

 … achieving these just moves the target a bit further

 … testing scaling up to large node count through MPI, e.g. on CORI

 Input distribution and Output gathering. 

31



Interaction with Frameworks

 Threading technology

 Currently using std::thread to steer ‘tasks’ (but no thread local storage).

 The number of threads used is configurable. 

 Testing OpenMP/MPI to steer Xeon Phi in offload mode and with separate 
processes.

 Exploring if we can benefit from TBB and how to best coordinate with other 
uses 

 Coprocessors

 GPU (and Xeon Phi) can be used optionally via plugin 

 Enabling use of the coprocessor in offload mode will be done via a function call.

 Coprocessor sharing

 Number of CUDA threads and blocks used by GeantV is customizable

 Newer NVidia hardware support concurrent execution of independent kernels 
(in addition to the queue mechanism that was supported for a very long time).

32



Interaction with Frameworks

 Events/Data in and out from Frameworks

 Still under design

 Input

 One or more initial particles coming from one or more events will be 
passed on

 Output

 Upon completion of the propagation of all the particles for an event, a 
call back will be made (CMSApplication::Digitize for example)

 Should find a way to recast this flow into one of the TBB task mechanism

 Memory handling

 Tied to the number of event in flight and the size of the output information

 High watermark used to trigger a reduction in number of events in flight to 
limit memory usage to under the watermark

33



Engagement

 VecGeom alpha release ready to be tested as Geant4 geometry 

update.

 Magnetic field code update will also eventually be available to Geant4

 VecCore can be used to develop technology agnostic vector code

 GeantV ready to get out of the laboratory

 Starting to think about/design interfaces for user actions, digitization, etc.

 Welcoming early stakeholders to start reviewing the interfaces needed for a 

full application and develop more realistic tests and prototypes

34



Restating our case

 We developed the three main components

 A multithread scheduler to handle the particle baskets

 A vectorised geometry library and navigator

 A vectorised Compton scattering and a tabulated physics list

 Our results indicate that

 Basket handling introduces a minimal overhead 

 SIMD gains half an order of magnitude in performance

 An optimistic prediction based on our results gives an improvement 
factor beyond the 3.3 currently achieved on CPU

 GPU and Xeon Phi improvement factors are expected to be higher

We are on track with achieving our objectives (see slide 22, 2 to 5 
speedup)

35



Thank you!
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BACKUPS
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GeantV: (familiar) motivations

 Performance of our code scales 
with clock cycle (hence is stagnant!)

 Needs will increase more than 
tenfold and the budget will be 
constant at best

 HEP code needs to exploit new 
architectures and to team with other 
disciplines to share the optimization 
effort

 Data & instruction locality and 
vectorisation

 Portability, better physics and 
optimization will be the targets

 Simulation can lead the way to 
show how to exploit today's CPU's 
resources more effectively in 
complex applications

• Seeking ways to write code portable 

between CPU with vector units or not 

and accelerators (GPU, Xeon Phi)
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NUMA awareness

 Latency of memory access depends on 
“locality distance” 

 Libraries used:

 libnuma, numactl – NUMA memory & 
thread affinity policies

 Developed by SUSE Labs & SGI

 Most linux flavors, LGPL license

 Portable Hardware Locality (hwloc) –
NUMA topology detection, API & tools

 Developed within Open MPI

 NewBSD license

 Layer on top of libnuma & libhwloc to 
control affinity
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NUMA aware GeantV

to be tested on KNL (SNC mode)

 Replicate schedulers on NUMA 

clusters

 One basketizer per NUMA node

 2 supported modes

 MPI dispatch running one GeantV

process per NUMA node

 Single process spawning one 

scheduler per NUMA node

 Loose communication between 

NUMA nodes at basketizing

step

 Currently under development
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 High vectorization intensity achieved for both ideal and basketized

cases

 AVX-512 brings an extra factor of ~2 to our benchmark

AVX-512 versus AVX2 on KNL
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Scalability on many-core

 Fine grain MT preventing 
to scale to high number 
of threads

 Issue for many core 
architectures

 Split application in 
(NUMA-aware) clusters 
and use a common event 
queue for workload 
balancing

 Lightweight/no 
interaction

 Memory friendly

 Possible to extend 
across sockets, replacing 
the concurrent queue 
with an event server 
using MPI channels

Lock-free algorithm

(memory polling)Algorithm using spinlocks

Rebasketizing

2x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Process

Process/threads

Process/threads

MPI 
across 
socke

ts

Events 
queue

andrei.gheata@cern.ch : Experiences from 

developing GeantV 42



Going CUDA – beyond writing custom 

kernels

GeantV scheduler can communicate with arbitrary device brokers

 Getting work and processing in native mode or processing steps of work and sending 
data back to the host

 Implemented so far: CUDA broker, KNC offload interface. KNL will work in native 
mode

Host code instrumented 

with __host__ __device__ 

macros

Instrumented methods 

compiled in ::cuda

namespace

Library compiled for host 

and device (nvcc)

GPU broker dealing with 

initialization on device 

and data copying

andrei.gheata@cern.ch : Experiences from 

developing GeantV 43



Why not Geant4+?

 Extensive prototyping and analysis has convinced us that 

“vectorisation” of Geant4 was not achievable without a major 

rewrite of the code

 No hotspots (!)

 Virtual table structure very deep and complex (1990’s style)

 Codebase very large and non-homogeneous

 Auto-vectorization can only have small and very localized effect

 No criticism, but even the best things age (born 1994)

44



Geant4 Profiling Example: Call 

Graph

45

valgrind / gprof2dot / graphviz
Geant4 example B1 with 100 protons



Geant4 Profiling Example: Call Map

46

valgrind / kcachegrind

No easy to address hotspots



“Basketised” transport

Deal with particles in parallel

Output buffer(s)

Particles are transported 
per thread and put in 
output buffers

A dispatcher thread puts 
particles back into 
transport buffers

Everything happens 
asynchronously and 
in parallel

The challenge is to 
minimise locks

Keep long vectors

Avoid memory 
explosion

47



Explicit vectorization

● Explicit SIMD vectorization 

can be implemented directly 

using intrinsics, but a 

vectorization library already 

brings many utilities pre-

defined, like common math 

operators and functions.

● VecGeom currently works with 

Vc library, by Mathias Kretz, 

but other libraries can be 

easily plugged in (Agner Fog's 

VCL, Intel's VML, Cilk Plus, 

…).

A new backend is maybe all 

that is needed.



Physics developments: Multiple 

Scattering

49

G4 precision

G4 fast

GV

Sandia data

Source: M.Novak



GeantV Multiple Scateeting

 The new algorithm is being 

now vectorised for GeantV

 It is in an experimental 

physics list for Geant4

 Candidate to become the 

default

50

Physics validation

Up to 30% faster in scalar

Less charged steps (30%-50%)



The problem

Detailed simulation of subatomic particle 
transport and interactions in detector 
geometries

Using state of the art physics models, 
propagation in electromagnetic fields in 
geometries having complexities of 
millions of parts

Heavy computation requirements, 
massively CPU-bound, seeking 
organically HPC solutions…

The LHC uses more than 50% of its 
distributed GRID power for detector 
simulations (~250.000 CPU years 
equivalent so far)

51

http://atlas.ch



Geant4 Geometry

52

A large collection of solids are defined in Geant4: 

G4Cons

G4Tubs

G4Polycone, G4 Polyhedra, G4Hype, 

G4TwistedTubs, G4TwistedTrap 

Also Boolean 

operations such as: 



Geant4 Transportation

53

The G4Track information is updated after every G4Step

 A G4Step is a step in the particle (track) propagation

 The user defines a maximum step length but steps also end 

when a physics process is invoked and at volume boundaries 

A G4Track also includes the info for transporting the particle 
through the detector  in G4 we typically use  Particle = Track

T2-T8 
(secondar
y tracks)

Tracking follows 
“last in first out” rule:
T1->T4->T3->T6->T7  -
>T5->T8->T2



Geant4 Magnetic Field
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Particle propagated in EM field by integration of equation of 
motion using the Runge-Kutta method (others also available)

 Curved path broken into linear chord segments to minimize the 

sagitta (maximum chord-trajectory distance)

 Chords used to interrogate navigator on whether the track has 

crossed a volume boundary

 miss distance parameter used to tune volume intersection 

accuracy

G4 supports user defined, uniform, and non-uniform (static or 

time dependent) magnetic fields



Specialized Geometry Library.

 Backward compatibility with ROOT and Geant4

 Continue the already started AIDA USolids project

 Numerical simulation have special requirements on numerical stability (double vs 
float, no leaks, we transport things across boundaries often not the case in 3D 
graphics engines)

 HEP use specialized volumes not existing in external packages (polycone) and we 
can put a lot of domain specific knowledge to accelerate things

 Single solution for CPU and GPU

 Rely on special functions "safety" which might not exist in classical 3D rendering 
engines (which concentrate on hit detection)

 Need an exact volume representation (and not a triangle approximation).

 Different scale than most 3D graphics engines (that often have far fewer things to 
treat) 55


