TOTEM status report

E. Radicioni
outline

• Running scenarios
• Strategy for special effort on CT-PPS
• Exceptional integration effort
 – RP status and insertion tests
 – DAQ and Trigger integration w/CMS
 – Totem Si-strips readout and reconstruction in CMS
 – DAQ and Offline
 – New diamond detectors
 – Clock distribution system
 – DQM and Offline integration in CMSSW
running scenario: high beta

- $\beta^* = 2500\text{m}$
- Measure elastic scattering in Nuclear-Coulomb interference region at 13TeV
- Check at higher energy what measured at 8 TeV:
 - Non exponential behavior at low $|t|$
 - ρ values at higher energy.
running scenario: CT-PPS

• Anticipate running operations in 2016
 – $\gamma\gamma$ candidate at 750 GeV could be produced exclusively and seen in CT-PPS
 • Harland-Lang, Khoze, Ryskin (arXiv:1601.07187)

• CT-PPS physics can start one year earlier than foreseen.
 – Exclusive DiJet physics
 – Anomalous quartic couplings measurement.
CT-PPS strategy 2016

2 Tracking horizontal Roman Pots (210 near and far) qualified for Low β and High intensity operation.

Use current Totem Si Strip detectors in 2016 before the new 3D pixel are ready (2017). Estimation of correct working over 10 fb$^{-1}$ per telescope.

2 Telescope groups are available to get up to 20 fb$^{-1}$ of integrated luminosity before loosing tracking efficiency.

1 Timing cylindrical horizontal Roman Pot qualified for Low β and High intensity operation.

Since no $\beta^*{=}90\text{m}$ medium luminosity run is foreseen in 2016, we decided to install 2 diamonds detector packages, developed for the vertical Roman Pots, in the cylindrical one during TS1.

In addition to TOF, they give some proton tagging with enough ξ resolution when Si strip loose efficiency.
T1, T2 status

• T2
 – Control loop fixed on the faulty quarter
 – Water leak fixed
 – The detector is fully recovered.

• T1
 – The detector has been removed from CMS and safely stored on surface.
 – Not needed for the 2016 running
 – Scenario: save it from radiation damage
RP status

- Removed 220 Near Vertical detectors to prepare the installation of diamonds later in TS2
- Electrical trigger of the Vertical Pots connected to the new 210 Far (tilted) pots
- Electrical trigger of the 220 Horizontal moved to 210 Horizontal for low β running.
- The two 210 Horizontal are qualified for low β beams insertion together
- Cylindrical RP for timing ready to receive diamond detectors in TS1
RP Insertions 2016

Programme for insertions in intensity ramp-up

• Agreed settings:
 15 σ + 0.5 mm until TS1, then removal of 0.5 mm margin if demonstrated to be possible

• Insertion in which fills?
 2nd fill of each intensity step, then – if successful – subsequent insertions possible

• Insertion at what time in the fill?
 2 hours after declaration of Stable Beams

→ Insertions with up to 1177 bunches successfully completed \((L \leq 3.2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1})\)

• Tests of removal of the 0.5 mm margin:
 - in addition to orbit stability observations
 - End-of-fill tests before TS1:

\[
\begin{array}{cccc}
\checkmark & \checkmark & \checkmark & ? \\
3 & 12 & 49 & 313 & 601 & 889 & 1177 & 1753 & 2300 & 2800 \\
\end{array}
\]

2244 (max. in 2015)
BLM Response 2016 with and without Margin

(15 σ + 0.5 mm and 15 σ)

So far: very little effect from removing the 0.5 mm margin!

courtesy: Mario Deile
PROTON PHYSICS: STABLE BEAMS

Energy: 6499 GeV
I(B1): 1.04e+14
I(B2): 1.06e+14

Inst. Lumi [(ub.s)^-1]
IP1: 3256.93
IP2: 1.79
IP5: 3212.21
IP8: 179.67

FBCT Intensity and Beam Energy

Instantaneous Luminosity

Comments (20-May-2016 06:43:12)
physics fill with 1200 bunches
TOTEM XRP in

BIS status and SMP flags
B1	B2
true | true
true | true
false | false
true | true

AFS: 25ns_1177b_1165_990_984_72bpi_19inj
PM Status B1 | ENABLED
PM Status B2 | ENABLED
TOTEM readout back-end

SRS-FEC: interface to stand-alone DAQ

OptoRX & S-LINK 64 to CMS DAQ

Data concentrator board with interface to TCDS system (timing trigger and fast-command)

Designed and implemented to be CMS compliant at both HW and FW level

Trigger Throttling System interface to CMS
DAQ and TCDS integration

The TOTEM DAQ has been designed to be compliant with the CMS one. The integration of the two systems required:

• **Hardware**
 – All OptoRx cards upgraded with larger FPGA flash
 – 5 OptoRx installed and connected to Front-end Readout Links (FRL) and Fast Merging Module (FMM)
 – 2 TCDS (2 iCl + 2 PI) partitions installed with fibers pulled from S1 <-> S2

• **Software**
 – Level 1 Function Manager implemented
 – Configurator of readout back-end (OptoRx)
 – Configurator of TDCS system
 – MiniDAQ/Global run configuration

• **Firmware**
 – SLink interface (OptoRX -> FRL)
 – Compatibility to CMS Trigger Throttling System (TTS)
 – Compatibility to TCDS ReSync fast command when Out-Of-Synch
DAQ integration: project timeline

Feb 9th
- 1st meeting with CMS DAQ
- Documentation opened
- System requirements identified

Apr 6th
- 1st MiniDAQ readout test at 10Hz with emulated data
- Files available to offline/dqm

Apr 27th
- 1st MiniDAQ high rate test ok w. emulated data
- Slink data transfer error identified and fixed
- ReSync fast-command test
- ~90kHz rate limit reached w/o errors

May 2nd
- 1st MiniDAQ test with Si-Strip ON
- ReSynch fast-command test OK
- RAW data mode tested
- Zero-suppr. mode tested lowering the VFAT’s thresholds

May 4th
- Si-Strip in global running with CMS
- Stress test 90k rate w. periodic ReSync OK

May 18th
- Si-Strip timed w/ LHC beam and CMS global trigger

Activity in Hor. POTs per BX

<table>
<thead>
<tr>
<th>all activity per BX</th>
<th>Entries</th>
<th>Mean</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event BX</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First global run of SiStrips in CMS DAQ

- Diamond detectors will follow the same path front-end ➔ TOTEM Opto-RX ➔ CMS FRL

25/05/16
E. Radicioni, INFN
Global run of SiStrips, latency adjusted
diamond detectors

- Specs equivalent or better than R&D samples
- Compatible with resolution <= 100ps per plane
- T/P stability verified OK for the first detector package (including overpressure test and T_{min} down to -25°C). Second package to follow
- Detector package integration is OK, initial noise hiccups solved
- Final test with front/end electronics next week

Goal: ready for installation during TS1
Clock distribution system ready for installation in TS1

- All components set up in the laboratory for characterization and stability checks. Working and ready to be installed
- Installation of the receiving units close to the RPs in the tunnel during TS1.
Offline and DQM

- All code (unpacking, clustering, reco, ...) migrated to CMSSW8X
- Code refactory to comply to CMS SW standards
- Integration/backporting in CMSSW81X
- Already working SiStrip DQM
 - Diamond detectors to follow
- Integration of SiStrips
 - reconstruction OK
 - working on simulation
- In parallel, working on simulation and Database for all detectors, including:
 - Diamonds
 - Quartic
 - pixels

25/05/16
E. Radicioni, INFN
Offline and DQM: first data plots from global runs

Single track

Multiple tracks

Showers.

25/05/16

E. Radicioni, INFN
conclusions

• Inter-operation of TOTEM systems with CMS has been demonstrated
• Silicon Strips detectors are now routinely included in the CMS global runs
• Tight schedule on several fronts for “accelerated” CT-PPS
 – up to now all deadlines have been met
 – next: TS1 installations
• The achievements of the last few months would not have been possible without help from
 – CMS DAQ group and Offline Coordinators
 – for the operations in IP5, the CMS Run Coordinators