Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders

RD42 Status Report

Harris Kagan for the RD42 Collaboration LHCC Meeting - May 25, 2016

Outline of Talk

- The RD42 Collaboration
- The RD42 Program
- Development of Material and Production Capabilities
- Diamond Devices in the LHC and Experiments
- Diamond Device Development 3D Diamond
- Rate Studies
- Summary

The 2016 RD42 Collaboration

The 2016 RD42 Collaboration

A. Alexopoulos³, M. Artuso²², F. Bachmair²⁶, L. Bäni²⁶, M. Bartosik³, J. Beacham¹⁵, H. Beck²⁵, V. Bellini², V. Belyaev¹⁴, B. Bentele²¹, E. Berdermann⁷, P. Bergonzo¹³ A. Bes³⁰, J-M. Brom⁹, M. Bruzzi⁵, M. Cerv³, G. Chiodini²⁹, D. Chren²⁰, V. Cindro¹¹, G. Claus⁹, J. Collot³⁰, J. Cumalat²¹ A. Dabrowski³, R. D'Alessandro⁵, W. de Boer¹², B. Dehning³, C. Dorfer²⁶, M. Dunser³, V. Eremin⁸, R. Eusebi²⁷, G. Forcolin²⁴, J. Forneris¹⁷, H. Frais-Kölbl⁴, K.K. Gan¹⁵, M. Gastal³, C. Giroletti¹⁹, M. Goffe⁹, J. Goldstein¹⁹, A. Golubev¹⁰, A. Gorišek¹¹, E. Grigoriev¹⁰, J. Grosse-Knetter²⁵, A. Grummer²³, B. Gui¹⁵, M. Guthoff³, I. Haughton²⁴, B. Hiti¹¹, D. Hits²⁶, M. Hoeferkamp²³, T. Hofmann³, J. Hosslet⁹, J-Y. Hostachy³⁰, F. Hügging¹, C. Hutton¹⁹, H. Jansen³, J. Janssen¹, H. Kagan^{15,} K. Kanxheri³¹, G. Kasieczka²⁶, R. Kass¹⁵, F. Kassel¹², M. Kis⁷, G. Kramberger¹¹, S. Kuleshov¹⁰, A. Lacoste³⁰, S. Lagomarsino⁵, A. Lo Giudice¹⁷, E. Lukosi²⁸, C. Maazouzi⁹, I. Mandic¹¹, C. Mathieu⁹, N. McFadden²³, M. Menichelli³¹ M. Mikuž¹¹, A. Morozzi³¹, R. Mountain²², S. Murphy²⁴, M. Muškinja¹¹, A. Oh²⁴, P. Olivero¹⁷, D. Passeri³¹ H. Pernegger³, R. Perrino²⁹, F. Picollo¹⁷, M. Pomorski¹³, R. Potenza², A. Quadt²⁵, A. Re¹⁷, M. Reichmann²⁶, G. Riley²⁸, S. Roe³, D. Sanz²⁶, M. Scaringella⁵, D. Schaefer³, C.J. Schmidt⁷, S. Schnetzer¹⁶, T. Schreiner⁴, S. Sciortino⁵, A. Scorzoni³¹, S. Seidel²³, L. Servoli³¹, B. Sopko²⁰, V. Sopko²⁰, S. Spagnolo²⁹, S. Spanier²⁸, K. Stenson²¹, R. Stone¹⁶, C. Sutera², A. Taylor²³, M. Traeger⁷, D. Tromson¹³, W. Trischuk^{18,}, C. Tuve², L. Uplegger⁶, J. Velthuis¹⁹, N. Venturi¹⁸, E. Vittone¹⁷, S. Wagner²¹, R. Wallny²⁶, J.C. Wang²², P. Weilhammer³, J. Weingarten²⁵, C. Weiss³, T. Wengler³, N. Wermes¹, M. Yamouni³⁰, M. Zavrtanik¹¹

¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy ³ CERN, Geneva, Switzerland ⁴ FWT. Wiener Neustadt, Austria ⁵ INFN/University of Florence, Florence, Italy ⁶ FNAL. Batavia, USA ⁷ GSI, Darmstadt, Germany ⁸ loffe Institute, St. Petersburg, Russia ⁹ IPHC, Strasbourg, France ¹⁰ ITEP, Moscow, Russia ¹¹ Jožef Stefan Institute, Ljubljana, Slovenia ¹² Universität Karlsruhe, Karlsruhe, Germany ¹³ CEA-LIST Technologies Avancees, Saclay, France ¹⁴ MEPHI Institute, Moscow, Russia ¹⁵ The Ohio State University, Columbus, OH, USA ¹⁶ Rutgers University, Piscataway, NJ, USA ¹⁷ University of Torino, Torino, Italy ¹⁸ University of Toronto, Toronto, ON, Canada ¹⁹ University of Bristol, Bristol, UK ²⁰ Czech Technical Univ., Prague, Czech Republic ²¹ University of Colorado, Boulder, CO, USA ²² Syracuse University, Syracuse, NY, USA ²³ University of New Mexico, Albuquerque, NM, USA ²⁴ University of Manchester, Manchester, UK ²⁵ Universität Goettingen, Goettingen, Germany ²⁶ ETH Zürich, Zürich, Switzerland ²⁷ Texas A&M, College Park Station, TX, USA ²⁸ University of Tennessee, Knoxville, TN, USA ²⁹ INFN-Lecce, Lecce, Italy ³⁰ LPSC-Grenoble, Grenoble, Switzerland ³¹ INFN-Perugia, Perugia, Italy

127 Participants

31 Institutes

Areas of work in RD42:

- Characterization of diamond (materials work)
- Work with manufacturers (feedback)
- Development of machine devices (BLM, lumi)
- Development of detectors (pad, strip, pixel, 3D)
- Irradiation (JSI,LANL) and Beam tests (CERN, PSI)

RD42 meetings: https://indico.cern.ch/category/3177/

- 11 published papers in the last year
- 11 conference talks in the last year
- 3 Ph.D. students graduated in the last year
- 11 Ph.D. students continuing in 2016

LHCC Milestones/Priorities of Research-2015

- Continue to develop pCVD and scCVD material.
- Expand sensor grade manufacturing capability.
- Beam tests of the highest quality material.
- Test radiation tolerance and rate tolerance of highest quality pCVD and scCVD material.
- Develop diamond devices for the LHC (BLM's) and LHC experiments (pixel detectors, lumi).
- Develop diamond devices for future HL-LHC experiments (3D diamond devices) and machine.
- Record publications/talks/theses/students

- E6/II-VI provided first sensors for ATLAS DBM in 2013
 200-225um collection distance
- Wafer production capabilities expanded/higher quality
 - ♦ 300-325um collection distance in production
 - ♦ 400um goal in sight!

1. Cryogenic BLMs

2. Fast diamond BLMs

2

Fast diamond BLMs

* 2015 LHC beam commissioning

- high injection losses were observed at the LHC internal beam absorber blocks (TDI) in IP2 and IP8.
- * Theses losses reached up to **90% of the dump threshold** of the respective beam loss monitors (BLM).
- * **Diamond based particle detectors** are installed downstream of the TDIs in the injection regions of the LHC.

Marcin Bartosik – RD42 Collaboration Meeting

18

8

Fast diamond BLMs

- Their nanosecond time resolution allowed to identify the time structure of the injection losses for the first time.
- During dedicated beam time at the LHC methods for mitigating these injection losses were successfully demonstrated.
- By exciting the recaptured beam around the nominal bunch train with SPS tune kicker magnet a reduction of the loss signal by 35% was achieved.

- Current generation Pixel Detectors
 ATLAS DBM (low threshold operation)
- Future HL-LHC Trackers
 - •ATLAS
 - •3D diamond

- ATLAS DBM integrated in ATLAS readout in 2015
- Thresholds tuned to 2500e (lower than silicon)
 Would like to lower this (1100e possible on bench)
- Took data found operation issues with FE-I4
 Revamped safeguards almost ready now

² IJS Ljubljana

Harris Kagan

Beam Test at CERN SPS 2015

July/August 2015:

- 77 Mio triggers
- 57 runs

October 2015:

- 115 Mio triggers
- 56 runs

May 2016

Modules:

- MDBM-30 (ADBM-33 (E6-old), mounted in 2013)
- MDBM-120 (ADBM-58 (II-VI), mounted in 2014)
- MDBM-107 (ADBM-17 (E6), mounted in 2015)
- MDBM-37 (ADBM-19 (E6), mounted in 2015)
- MDBM-108 (ADBM-18 (E6), mounted in 2015)
- MDBM-119 (ADBM-60 (II-VI), mounted in 2015)
- CD182 (scCVD)
- DDL7 (scCVD)

MDBM-120

RD42 - Jens Janssen Harris Kagan

2

Compare standard "Low Threshold" tuning (1500-2500e) and new Threshold Baseline tuning (1000e)

Threshold Baseline Tuning

- Avoid using on-chip charge injection circuit
- Two loops:

RD42 Report

- Outer loop decreases global threshold
- Inner loop increases pixel threshold
- Initial condition:
 - Set GDAC (global threshold) to a rather high value
 - Set TDAC (pixel threshold) to lowest possible threshold

"Low Threshold" (1500-2500e)

Threshold Baseline (1000e)

Results applicable in ATLAS - something like this will be necessary for irradiated silicon as well

RD42 Report

Harris Kagan

Last year we showed the results in scCVD diamond -Compared scCVD strip detector (500V) with 3D (25V) This year the first 3D device in pCVD diamond -Compare pCVD strip detector (500V) with 3D (60V)

• Measured noise:

- Planar strip: 88e
- Phantom: 91e
- 3D no noisy strips: 104e

- Measured signal:
 - Visually 3D gives more charge that planar strip!

• Measured signal (diamond thickness 500um):

- Planar Strip ave charge
 - 6,900e or ccd=192um
- 3D ave charge 13,500e or ccd=350-375um
- For the first time collect >75% of charge in pCVD

- In May 2016 tested first full 3D in pCVD with two dramatic improvements
 - An order of magnitude more cells (1188 vs 99)
 - Smaller cell size (100um vs 150um)

Readout side

- Preliminary results of full 3D in pCVD
 - First plot of 3D ave charge in small "good" region
 - Largest charge collection in pCVD diamond
 - >85% of charge collected
- Full analysis in progress

Rate studies in pCVD diamond

- Done at PSI Last year rates up to 300kHz/cm²
- This year w/new electronics, rates up to 10MHz/cm²

No rate dependence observed in pCVD up to 10MHz/cm²

Worked closely with manufacturers

- Material quality increased
- Production capabilities increased
- Diamonds in the LHC machine making impact moving forward
- ATLAS/CMS -BCM, BLM, DBM will see collisions again soon
 Abort, luminosity and background functionality in all LHC expts
- First pixel project is about to start taking data
 - ATLAS DBM being commissioned for 13 TeV collisions
- 3D detector prototypes made great progress
 - 3D works in pCVD diamond; scale up worked; smaller cells worked
- Quantified understanding of rate effects in diamond
 - pCVD shows no rate effect up to 10MHz/cm²
- RD42 played a pivotal role in making all this happen!

- Characterization of diamond (materials work)
- Work with manufacturers (feedback)
- Development of machine devices (BLM, lumi)
- Development of detectors (pad, strip, pixel, 3D)
- Irradiation(JSI,LANL,CERN) and Beam tests (CERN,PSI)

ATLAS DBM: built on success of BCM - pixelate the sensors

- Use IBL demonstrator modules
- Installed in 2013 during service panel replacement
- Four 3-plane stations on each side of ATLAS

Request of CERN LHCC

The RD42 Role at CERN

- Irradiations, development of new manufacturers, sample procurement, test beams²⁰¹³
- ♦ Central facilities for all experiments → this worked for BCM's
- CERN Group in RD42 to be maintained

RD42 Request to CERN/LHCC

- RD42 is supported by many national agencies:
 - → continuation of official recognition by CERN critical
 - → ~200kCHF from outside CERN
- RD42 requires access to CERN facilities:
 - →maintain the present 20 m² of lab space (test setups, detector prep, ...)
 - → maintain present office space
 - → test beam time (2014++) critical for next generation of proposals

RD42 & CERN play a critical role in diamond development