Old and New Ideas in Dark Matter Detection

Enectalí Figueroa-Feliciano Northwestern

Outline

- The Dark Matter Problem
- Dark Matter Detection Strategies
- Direct Detection Experiments
 - Nuclear Recoils
 - Electron Recoils
 - Coherent/Resonant Effects
- Indirect Detection with Micro-X
- Conclusions

Dark Matter: A Beautiful Problem in Physics

to Orders or Magnituder Magnituder Enectali Figueroa-Feliciano \ PONT \ April 2017

The Hunt for Dark Matter

AMS-02

FERMI,

Pamela

Magic

ceCube

1.5 kilometers

Chandra, XMM-Newton Micro-X

HESS, VERITAS,

Indirect Detection

Astrophysics Measurements

Production in Colliders

ATLA

Direct Detection

LHC

The Hunt for Dark Matter

AMS-02

Chandra, XMM-Newton Micro-X

HESS, VERITAS,

Indirect Detection

Astrophysics Measurements

Production in Colliders

ATLA

LHC

Direct Detection

2.5 kilometer

ceCube

1.5 kilometers

FERMI,

Pamela

Magic

The Hunt for Dark Matter

AMS-02 CALET

HESS, VERITAS,

Indirect

strophysics Measurements

Production in Colliders

ATLA

Detection

Direct Detection

LHC

ceCube

1.5 kilometers

FERMI,

Pamela

Magic

Dark Matter Menu

- Axions
- Axion-like Particles
- Hidden Sector Particles
- Sterile Neutrinos
- WIMPs
- SuperWIMPs
- Solitons
- KK excitations
- Gravitinos
- And many more that can fit the bill...

Enectali Figueroa-Feliciano \ PONT \ April 2017

Annual Modulation: "Model-Independent" Search

Annual Modulation: "Model-Independent" Search

DAMA/LIBRA

2-4 keV

- Using an array of radiopure Nal crystals, DAMA/Nal reported an annual modulation in event rate consistent with dark matter, observed over 7 annual cycles.
- In 2008, follow-up experiment, DAMA/LIBRA, confirms the annual modulation. Together the DAMA experiments now report an effect with a statistical significance of 9.3σ with a 1.33 ton-yr exposure over 14 annual cycles. A phase-2 program with lower-energy thresholds is currently taking data.
- To date no other experiments have confirmed this signal, yet several efforts are ongoing to directly test this. A viable dark matter model that explains this data (and its non-detection in other experiments) has not been found.

Enectali Figueroa-Feliciano \ PONT \ April 2017

Eur. Phys. J. C (2010) 67: 39–49

Eur. Phys. J. C (2013) 73:2648

Checking DAMA with Nal Detectors

Northern Hemisphere	Gran Sasso DAMA/LIBRA 250 kg running	Boulby DM-Ice North 37 kg R&D 250 kg planned	Canfranc ANAIS 37 kg R&D 250 kg planned	Y2L KIMS 45 kg R&D 200 kg planned	Gran Sasso SABRE R&D	Kamioka PICO-LON KamLAND- PICO R&D
Southern Hemisphere		South Pole DM-Ice 17 kg running 250 kg planned			Stawell SABRE Lab completion 2017	rock ice

Ultra-pure crystal development underway by DM-Ice, KIMS, ANAIS, SABRE, and PICO-LON collaborations

South Pole offers:

- Ultra-clean and ultra-stable environment
- Seasonal variation unambiguously different from dark matter modulation
- IceCube offers muon monitoring and veto as well as experience
- NSF-run South Pole Station for logistical support

DM-Ice and COSINE

COSINE-100

- Started running September 2016
- 8 crystals for a total of 106 kg
- Including DM-Ice37 crystals
- Low background, high QE 3" PMTs
- Active and passive shielding
- 2 years to reach DAMA sensitivity

Enectali Figueroa-Feliciano \ PONT \ April 2017

1	l	1	1	1		I	1	1		
feV	peV	neV	μeV	meV	eV	keV	MeV	GeV	TeV	PeV
				Dark	Matter	Mass				

	ALPs		Axions			Ste V	rile 's	WIMPs		
feV	peV	neV	μeV	meV Dark	eV Matter	keV Mass	MeV	GeV	TeV	PeV

	AL	.Ps	Axions			Ste V	rile 's	WIMPs		
feV	peV	neV	μeV	meV	eV	keV	MeV	GeV	TeV	PeV
				Dark	Matter	Mass				

	ALPs		Axions			Ste V	rile 's	WIMPs		
feV	peV	neV	μeV	meV Dark	eV Matter	keV Mass	MeV	GeV	TeV	PeV

	ALPs		Axions			Sterile V's		WIMPs		
feV	peV	neV	μeV	meV Darl	eV K Matter I	keV Mass	MeV	GeV	TeV	PeV
10-46	10-40	10 ⁻³⁴	10 ⁻²⁸ Max	10^{-22} x Recoil I	10 ⁻¹⁶ Energy in	10 ⁻¹⁰ Silicon	10 ⁻⁴ [eV]	102	10 ⁵	10 ⁵

	ALPs		Axions			Sterile V's			MPs	
feV	peV	neV	μeV	meV Dark	eV Matter N	keV Mass	MeV	GeV	TeV	PeV
				Duin		1400				
10 ⁻⁴⁶	10-40	10-34	10^{-28}	10 ⁻²²	10^{-16}	10^{-10}	10 ⁻⁴	10 ²	10 ⁵	105
			Max	k Recoil I	Energy in	Silicon	[eV]			
	1	1	I	I	I	I				
10^{26}	10^{23}	10^{20}	10^{17}	10^{14}	10^{11}	10^{8}	10 ⁵	10^{2}	10^{-1}	10 ⁻⁴
			Dark	Matter Pa	article De	ensity per	r Liter			
								N R	uclear ecoils	

	ALPs		LPs Axions			Ster V	rile 's	WIMPs		
feV	peV	neV	μeV	meV	eV	keV	MeV	GeV	TeV	PeV
				Dark	a Matter M	viass				
10^{-41}	10^{-35}	10 ⁻²⁹	10 ⁻²³	10^{-17}	10 ⁻¹¹	10 ⁻⁵	100	101	101	101
	Max Electron		n Recoil	Energy [eV]					
10 ²⁶	10 ²³	10 ²⁰	10 ¹⁷	10 ¹⁴	10 ¹¹	10 ⁸	10 ⁵	102	10 ⁻¹	10-4
			Dark	Matter Pa	article De	ensity per	r Liter			
				Ele	ectron	N R	uclear ecoils	•		

	ALPs		Axions			Sterile V's		WI	MPs	
feV	peV	neV	μeV	meV Dark	eV Matter I	keV Mass	MeV	GeV	TeV	PeV
10 ⁻⁴¹	10 ⁻³⁵	10 ⁻²⁹	10 ⁻²³ Max	10 ⁻¹⁷ x Electro	10 ⁻¹¹ n Recoil	10 ⁻⁵ Energy [10 ⁰ eV]	10 ¹	10 ¹	10 ¹
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷ Mean	10 ⁻⁶ Distance	10 ⁻⁵ e Betweet	10 ⁻⁴ n Particle	10 ⁻³ es [m]	10 ⁻²	10 ⁻¹	100
10 ¹²	109	10 ⁶	10 ³ Dark	10 ⁰ Matter P	10 ⁻³ article W	10 ⁻⁶ avelengt	10 ⁻⁹ h [m]	10 ⁻¹²	10 ⁻¹⁵	10 ⁻¹⁸
						Re	ecoils	R	ecoils	

			Hio	dden S	ector	Parti	cles			
	AL	Ps	Axions			Ste V	rile 's	WI	MPs	
feV	peV	neV	μeV	meV	eV	keV	MeV	GeV	TeV	PeV
		·		Dark	(Matter	Mass				
10^{-41}	10^{-35}	10-29	10^{-23}	10^{-17}	10 ⁻¹¹	10 ⁻⁵	10 ⁰	10 ¹	10 ¹	10 ¹
			Ma	x Electro	n Recoil	Energy	[eV]			
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10^{-6}	10 ⁻⁵	10 ⁻⁴	10 ⁻³	10 ⁻²	10 ⁻¹	100
	l	l	Mean	Distance	e Betwee	n Particl	es [m]			
10^{12}	10^{9}	10^{6}	10^{3}	10^{0}	10^{-3}	10^{-6}	10 ⁻⁹	10^{-12}	10^{-15}	10 ⁻¹⁸
			Dark	Matter P	article W	aveleng	th [m]			
						Ele R	ectron ecoils	N R	luclear lecoils	
Enectali Fig	ueroa-Felicia	ano \ PONT	\ April 2017							13

			Hio	den S	Sector	Partic	cles			
	AL	ALPs Axions				Ste V	rile 's	WI	MPs	
feV	peV	neV	μeV	meV Darl	eV <mark>< M</mark> atter I	keV Mass	MeV	GeV	TeV	PeV
10 ⁻⁴¹	10 ⁻³⁵	10-29	10-23	10 ⁻¹⁷	10 ⁻¹¹	10 ⁻⁵	100	101	101	10 ¹
			Ma	x Electro	n Recoil	Energy [eVJ		1	
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷ Mean	10 ⁻⁶ Distance	10 ⁻⁵ e Betwee	10 ⁻⁴ n Particle	10^{-3} es [m]	10 ⁻²	10 ⁻¹	10 ⁰
10 ¹²	109	10 ⁶	10 ³	10 ⁰	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²	10 ⁻¹⁵	10-18
	Coho	ront/D	Dark	Matter P	article W	avelengt		N		
		Detect	cion	Inc		R	ecoils	R	ecoils	
Enectali Fig	gueroa-Felicia	ano \ PONT	\ April 2017							13

Nuclear Recoils

Dark Matter in the Lab

- Assume a Maxwell-Boltzmann velocity distribution for the dark matter halo
- Density: 0.3 GeV/cm³
- Mass: assume 60 GeV/c²
- Relative velocity ~220 km/s
- ~100,000 particles/cm²/sec
- About 20 million/hand/sec

Enectali Figueroa-Feliciano \ PONT \ April 2017

$$\begin{array}{ll} \mbox{Interaction} & \frac{dR}{dE_R} = \frac{\sigma_o}{m_\chi} \; \frac{F^2(E_R)}{m_r^2} \; \frac{\rho_o \; T(E_R)}{v_o \; \sqrt{\pi}} \\ \end{array}$$

$$F(E_R) \simeq \exp\left(-E_R m_N R_o^2/3\right)$$

 $m_r = \frac{m_{\chi} m_N}{m_{\chi} + m_N}$ $T(E_R) = \frac{\sqrt{\pi}}{2} v_o \int_{v_{\min}}^{\infty} \frac{f_1(v)}{v} dv$ $v_{\min} = \sqrt{E_R m_N / (2m_r^2)}$

"form factor" (quantum mechanics of interaction with nucleus)

"reduced mass"

integral over local WIMP velocity distribution

Principles of Particle Detection

$$F(E_R) \simeq \exp\left(-E_R m_N R_o^2/3\right)$$

 $m_r = \frac{m_{\chi} m_N}{m_{\chi} + m_N}$ $T(E_R) = \frac{\sqrt{\pi}}{2} v_o \int_{v_{\min}}^{\infty} \frac{f_1(v)}{v} dv$ $v_{\min} = \sqrt{E_R m_N / (2m_r^2)}$

"form factor" (quantum mechanics of interaction with nucleus)

"reduced mass"

integral over local WIMP velocity distribution

Principles of Particle Detection

$$F(E_R) \simeq \exp\left(-E_R m_N R_o^2/3\right)$$

 $m_r = \frac{m_{\chi} m_N}{m_{\chi} + m_N}$ $T(E_R) = \frac{\sqrt{\pi}}{2} v_o \int_{v_{\min}}^{\infty} \frac{f_1(v)}{v} dv$ $v_{\min} = \sqrt{E_R m_N / (2m_r^2)}$

"form factor" (quantum mechanics of interaction with nucleus)

"reduced mass"

integral over local WIMP velocity distribution

Principles of Particle Detection

$$F(E_R) \simeq \exp\left(-E_R m_N R_o^2/3\right)$$

 $m_r = \frac{m_{\chi} m_N}{m_{\chi} + m_N}$ $T(E_R) = \frac{\sqrt{\pi}}{2} v_o \int_{v_{\min}}^{\infty} \frac{f_1(v)}{v} dv$ $v_{\min} = \sqrt{E_R m_N / (2m_r^2)}$

"form factor" (quantum mechanics of interaction with nucleus)

"reduced mass"

integral over local WIMP velocity distribution

The Interaction Rate is Extremely Low!

Enectali Figueroa-Feliciano \ PONT \ April 2017

But the Interaction Rate is Extremely Low!

Discrimination between electron and nuclear recoils really helps!

~1 event per kg per **year** (Nuclear Recoils) ~100 event per kg per **second** (Electron Recoils)

But the Interaction Rate is Extremely Low!

Discrimination between electron and nuclear recoils really helps!

~1 event per kg per **year** (Nuclear Recoils) ~100 event per kg per **second** (Electron Recoils)

Particle ID Through Detector Response

Particle ID Through Detector Response

Particle ID Through Detector Response

Phonons 10 meV/ph 100% energy

Scintillation ~ I keV/γ few % energy lonization ~ 10 eV/e 20% energy

19 N

- Scintillation Timing (DEAP/CLEAN, DarkSide, etc...)
- Signal Modulation (DAMA/LIBRA, DRIFT, DM-TPC, etc...)
- Nuclear-recoil-only trigger mechanism
 - (a la COUPP, PICASSO, PICO...)
- Self-Shielding (XMASS)
- Others...

The low-mass WIMP challenge

N

21

$$\Delta E = \frac{\Delta P^2}{2M_n} \lesssim \frac{2M_{DM}^2 v^2}{M_N}$$

The low-mass WIMP challenge

21

$$\Delta E = \frac{\Delta P^2}{2M_n} \lesssim \frac{2M_{DM}^2 v^2}{M_N}$$

- 1: Large Exposure (Mass x Time)
- 2: Low Background Rate
- 3: Discrimination between Signal and Backgrounds
- 4: Low Energy Threshold

Current Limits

Nuclear Recoil Detection Technologies

Noble Liquid Time-projection Chambers

Noble Liquid Time Projection Chambers

NOT TO SCALE!

Noble Liquid Time Projection Chambers

NOT TO SCALE!

The XENON Dark Matter Program

- XENON1T
 - 3.5 tons of XENON
 - 2 tons active
 - taking data now
 - first science results soon
- XENONnT
 - 7.5 tons of XENON
 - 6 tons active
 - Starts in 2019

LUX and LZ Programs

• LUX

• Begin taking data in 2019

The DarkSide Program

DarkSide-50

- Active neutron veto (borated liqud scintillator)
- Using underground Ar obtained 300x less ³⁹Ar events that atmospheric Ar

- 30Ton Ar, 20 Ton fiducial
- 100 Ton-yr background-free exposure
- Gd-loaded Water Cherenkov active veto
- Timeline: TBD

CRESST and **EDELWEISS**

- CRESST: phonon + light
- Current Experiment: CRESST Phase 2 ongoing
- New CRESST Phase III detectors focused on low-mass WIMPs

- EDELWEISS: phonon + charge
- 36 x 800 g detectors installed in cryostat; results later this year
- New runs with better sensitivity to light WIMPS using High Voltage operation coming soon.

SuperCDMS SNOLAB

<u>CDMS II</u>

4.6 kg Ge (19 x 240 g) 1.2 kg Si (11 x 106g) 3" Diameter 1 cm Thick

2 charge + 4 phonon

Enectali Figueroa-Feliciano \ PONT \ April 2017

SuperCDMS Soudan

9.0 kg Ge (15 x 600g) 3" Diameter 2.5 cm Thick

2 charge + 2 charge 4 phonon + 4 phonon

SuperCDMS SNOLAB

Funded G2 Experiment Data Taking in 2020 25 kg Ge (18 x 1.4 kg) 3.6 kg Si (6 x 0.6 kg) 4" Diameter 3.3 cm Thick 2 charge + 2 charge 6 phonon + 6 phonon

N

SuperCDMS SNOLAB @ the Ladder Lab

SuperCDMS Detectors: iZIPs

Ge (1.4 kg) Si (0.6 kg) 4" Diameter 3.3 cm Thick

2 charge + 2 charge 6 phonon + 6 phonon

SuperCDMS High-Voltage Operation

Phonon sensors measure amount of charge produced: Phonon-based charge amplification!

Other Nuclear Detection Technologies

- Bubble Chamber Experiments
 - PICO
 - Best Spin-Dependent Sensitivity
 - (currently running at SNOLAB)
 - Xenon Bubble Chamber
- Silicon CCDs: DAMIC
- Directional Detection Experiments
 - DRIFT, DMTPC, NEWAGE, MIMAC
- New Ideas
 - DNA and/or organic detectors?
 - Molecular dissociation / inelastic collisions?

Other Nuclear Detection Technologies

- Bubble Chamber Experiments
 - PICO
 - Best Spin-Dependent Sensitivity
 - (currently running at SNOLAB)
 - Xenon Bubble Chamber
- Silicon CCDs: DAMIC
- Directional Detection Experiments
 - DRIFT, DMTPC, NEWAGE, MIMAC
- New Ideas
 - DNA and/or organic detectors?
 - Molecular dissociation / inelastic collisions?

Directional Detection

- Thanks to the rotation of the Solar System around the galactic center, we cygnus expect a « wind of WIMPs » coming from constellation Cygnus at I=90 and b=0
- The expected WIMP signal has a strong dipole feature which cannot be mimicked by any backgrounds
- Unambiguous dark matter signature !

Directional Detection

Liquid Helium Detectors: Nuclear Recoils for MeV DM!

Enectali Figueroa-Feliciano \ PONT \ April 2017

Electron Recoils

How do we look for DM with electron recoils?

- Pretty much all experiments that look for nuclear recoils also see electron recoils!
- Single electron sensitivity expected in both liquid noble and crystal experiments.
- The main issues are threshold, fiducialization, and lowering backgrounds.
- Using materials with a band gap or even quasiparticles in superconductors can drastically reduce the threshold!

neV

μeV

Hochberg et al. 1504.07237 see also Essig et al. 1108.5383

Enectali Figueroa-Feliciano \ PONT \ April 2017

peV

feV

Electron Recoils with Silicon Detectors

Enectali Figueroa-Feliciano \ PONT \ April 2017

Electron Recoils with Scintillators

Coherent / Resonant Detection

Bosonic Dark Matter

G2 Funded Experiment

Halo axions convert into microwave photons inside a RF cavity threaded by a strong magnetic field

ADMX is sensitive to sub-yoctowatts of microwave power

New ADMX experiment insert fabricated and being assembled

Dilution refrigerator and quantum-limited amplifiers provide sensitivity for the ADMX "Definitive Search"

G2 ADMS Search Capability

U. Washington, LLNL, U. Florida, U.C. Berkeley, National Radio Astronomy Observatory, Sheffield U., Yale U., U. of Colorado (+ new collaborators soon)

10⁻⁴

10⁻⁶

Laser Experiments

Telescope

49

Enectali Figueroa-Feliciano \ PONT \ April 2017

Variety of Experiments

- Microwave Cavities
 - Low noise amplifiers (ADMX) and Rubidium Atoms (CARRACK)
 - Look for dark matter axions (low mass) converting to photons in B-Field
- Solar Observatories
 - X-Ray (CAST) and Germanium detectors
 - Look for axions generated from the sun
 - Higher coupling required than for DM axions.
- Lab experiments
 - Photon regeneration and polarization changes (PVLAS)
 - Look for production of axions from light passing through B-field

Fabry-Perot

- Higher coupling required.
- Ultralight axions (nano-eV)
- ALPS II (light shining through wall)
- (NMR / LC Circuit)

New Ideas to search for Hidden Photons

Hidden Photon Searches

Enectali Figueroa-Feliciano \ PONT \ April 2017

Indirect Detection of Sterile Neutrinos

- Sterile neutrinos are a natural way of giving the known neutrino species mass. IF sterile neutrinos exist, and one of them has a mass between a few keV and 100 keV, it could constitute some or all of the dark matter.
- Sterile neutrinos may decay to a photon and active neutrino via loop-suppressed processes.

$$\begin{split} \Gamma &= \frac{9\alpha G_F^2 m_s^5 \sin^2 2\theta}{1024\pi^4} \\ &= (1.38 \times 10^{-29} \text{ s}^{-1}) \left(\frac{\sin^2 2\theta}{10^{-7}}\right) \left(\frac{m_s}{1 \text{ keV}}\right)^5 \end{split}$$

53

Enectali Figueroa-Feliciano \ PONT \ April 2017

Sounding Rocket Payloads

- 300 seconds of on-target data above 169 km
- High resolution X-ray microcalorimeter with ~1cm^2 area and large ~steradian FOV
- Flights from White Sands Missile Range in New Mexico and Woomera Range in Australia

The Micro-X Sounding Rocket

- Payload under development. First flight less than a year away!
- TES Microcalorimeter array with 128 pixels, each with a 0.9mm x 0.9mm x (3µm Bi + 0.7µm Au) absorber
- Baseline energy resolution is 3-4 eV FWHM, flat out to 6-7 keV.
- 0.38 steradian FOV ~ 1200 arcmin radius, expect to increase to 1 sr in the future.

- With mirror, grasp = $38 \text{ cm}^2 \text{ deg}^2$
- Without mirror, grasp = 1256 cm² deg²

FOV for Micro-X GC Observation

Sterile Neutrino Bounds

E.F.F. et al, ApJ 814:82, 2015 arXiv:1506.05519

Mock Micro-X GC Observation

Enectali Figueroa-Feliciano \ PONT \ April 2017

Conclusions

- The next ten years will be very exciting for dark matter direct detection. Various G2 Experiments will come online, covering a lot of new parameter space.
- Although WIMPs remain a very interesting dark matter candidate, other scenarios are gaining traction in the theoretical community, while new ideas for direct searches have been proposed and are gaining momentum.
- Sterile Neutrino indirect searches with the Micro-X Payload will obtain worldleading sensitivity and be a definitive test of the 3.5 keV line.
- Both Old and New approaches are important!

