DARK ENERGY WITH KINETIC MATTER MIXING

Based on 1609.01272 with G. D'Amico, Z. Huang, F. Vernizzi

Michele Mancarella IPhT - CEA Saclay

ACDM and beyond

WHY?

- ACDM predicts unique growth of structure. Compatible with data, but space for deviations
- Alternative models predict more dynamics (& free parameters) at the level of perturbations
- 10-10² improvement expected in measurements of growth of structures. **Deviations testable**.

HOW? EFFECTIVE THEORY OF DARK ENERGY

- Parametrizes linear perturbations in single scalar field models
- Simple, minimal way to bridge theory and observations. Deviations from GR as relevant parameters
- In this talk: effect of kinetic mixing between matter and scalar (Kinetic Matter Mixing-KMM)

Gravitational sector: a general action

- Scalar breaks time diffs and preserves times diffs add all terms compatible with this pattern in unitary gauge & ADM (3+1) decomposition Creminelli et al., hep-th/0606090; Cheung et al., 0709.0293
- Linear perturbations, one d.o.f. without higher derivatives:

Gleyzes et al., 1304.4840, Bellini & Sawicki, 1404.3713,

Running Planck mass

$$S^{(2)} = \int d^4x \, a^3 \frac{M^2(t)}{2} \left[\delta K_{ij} \delta K^{ij} - \delta K^2 + \delta_2 \left(\sqrt{h} / a^{3} \, {}^{(3)}R \right) + \delta N \, {}^{(3)}R \right]$$

GR

$$+ \alpha_K(t)H^2(t) \delta N^2 + 4\alpha_B(t)H(t) \delta N\delta K + \alpha_T(t) \delta_2(\sqrt{h}/a^3R) + \alpha_H(t) \delta N^{(3)}R$$

Standard kinetic term (quintessence, k-essence)

Kinetic mixing gravity-scalar

Tensor speed excess

"Beyond Horndeski"/
GLPV

$$ds^{2} = -N^{2}dt^{2} + h_{ij} \left(N^{i}dt + dx^{i}\right) \left(N^{j}dt + dx^{j}\right)$$

Lapse N \circlearrowleft ϕ time kinetic energy of the scalar Extrinsic curvature $K_{ij} \sim \dot{h}_{ij}$ time kinetic energy of the metric Intrinsic curvature $^{(3)}R_{ij} \sim \nabla h_{ij}$ spatial kinetic energy of the metric

Disformal couplings to matter

• Structure of the action unchanged under transformation:

Bettoni and Liberati '13, Gleyzes et al. '14, Domnech, Naruko, Sasaki'15

$$\tilde{g}_{\mu\nu} = C(\phi)g_{\mu\nu} + D(\phi, X)\partial_{\mu}\phi\partial_{\nu}\phi$$
 $X \equiv g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$

$$S[g_{\mu\nu}, \alpha_I] = \tilde{S}[\tilde{g}_{\mu\nu}, \tilde{\alpha}_I] \qquad \qquad \tilde{\alpha}_I = \mathcal{F}_I(\alpha_J)$$

Disformal couplings to matter

Bettoni and Liberati '13, Gleyzes et al. '14, Domnech, Naruko, Sasaki'15

$$\tilde{g}_{\mu\nu} = C(\phi)g_{\mu\nu} + D(\phi, X)\partial_{\mu}\phi\partial_{\nu}\phi \qquad X \equiv g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$$

$$S[g_{\mu\nu}, \alpha_I] = \tilde{S}[\tilde{g}_{\mu\nu}, \tilde{\alpha}_I] \qquad \tilde{\alpha}_I = \mathcal{F}_I(\alpha_J)$$

ullet Couple matter to a Jordan frame metric of this form: $S_m = \int d^4x \mathcal{L}_m(ilde{g}_{\mu
u}, \psi_m)$

3 new parameters

$$\alpha_{C,m} = \frac{d \ln C_m}{d \ln a}, \quad \alpha_{D,m} = \frac{D_m}{C_m - D_m}, \quad \alpha_{X,m} = \frac{1}{C_m} \frac{\partial D_m}{\partial X}$$

1504.05481 with J. Gleyzes, D. Langlois, F. Vernizzi 1609.01272 with G. D'Amico, Z. Huang, F. Vernizzi

"Beyond Horndeski" = Kinetic Matter Mixing (KMM) with frame-invariant dispertion relation:

$$(\omega^2 - c_s^2 k^2)(\omega^2 - c_m^2 k^2) = \lambda^2 c_s^2 \,\omega^2 k^2$$

$$\lambda^2 \equiv \frac{1}{M^2 H^2 \, \alpha c_s^2} \Big[\rho_{\rm m} + (1+\alpha_{D,\rm m}) p_{\rm m} \Big] \, \frac{(\alpha_H - \alpha_{X,\rm m})^2}{(\alpha_H - \alpha_{X,\rm m})^2} \quad \text{frame-invariant parameter measuring the degree of KMM}$$

"Beyond Horndeski" = Kinetic Matter Mixing (KMM) with frame-invariant dispertion relation:

$$(\omega^2 - c_s^2 k^2)(\omega^2 - c_m^2 k^2) = \lambda^2 c_s^2 \omega^2 k^2$$

$$\lambda^2 \equiv \frac{1}{M^2 H^2 \, \alpha c_s^2} \Big[\rho_{\rm m} + (1+\alpha_{D,\rm m}) p_{\rm m} \Big] \, \frac{(\alpha_H - \alpha_{X,\rm m})^2}{(\alpha_H - \alpha_{X,\rm m})^2} \quad \text{frame-invariant parameter measuring the degree of KMM}$$

$$\tilde{g}_{\mu\nu} = g_{\mu\nu} + D(\phi, X)\partial_{\mu}\phi\partial_{\nu}\phi \qquad \Rightarrow \qquad \tilde{\alpha}_{H} = \frac{\alpha_{H} - \alpha_{X}}{1 + \alpha_{X}} \qquad \tilde{\alpha}_{X,m} = \frac{\alpha_{X,m} - \alpha_{X}}{1 + \alpha_{X}}$$

"Beyond Horndeski" = Kinetic Matter Mixing (KMM) with frame-invariant dispertion relation:

$$(\omega^2 - c_s^2 k^2)(\omega^2 - c_m^2 k^2) = \lambda^2 c_s^2 \,\omega^2 k^2$$

$$\lambda^2 \equiv \frac{1}{M^2 H^2 \, \alpha c_s^2} \Big[\rho_{\rm m} + (1+\alpha_{D,\rm m}) p_{\rm m} \Big] \, \frac{(\alpha_H - \alpha_{X,\rm m})^2}{(\alpha_H - \alpha_{X,\rm m})^2} \quad \text{frame-invariant parameter measuring the degree of KMM}$$

$$\tilde{g}_{\mu\nu} = g_{\mu\nu} + D(\phi, X)\partial_{\mu}\phi\partial_{\nu}\phi \qquad \Rightarrow \qquad \tilde{\alpha}_{H} = \frac{\alpha_{H} - \alpha_{X}}{1 + \alpha_{X}} \qquad \tilde{\alpha}_{X,m} = \frac{\alpha_{X,m} - \alpha_{X}}{1 + \alpha_{X}}$$

• Scalar-matter coupled system on sub-Hubble scales in Newtonian gauge:

$$\mathcal{L} = \frac{1}{2} \left\{ \left(1 + \frac{c_s^2}{c_{\rm m}^2} \lambda^2 \right) \dot{\pi}_{\rm c}^2 - c_s^2 (\nabla \pi_{\rm c})^2 + \dot{v}_{\rm c}^2 - c_{\rm m}^2 (\nabla v_{\rm c})^2 + 2 \frac{c_s}{c_{\rm m}} \lambda \, \dot{v}_{\rm c} \, \dot{\pi}_{\rm c} \right\}$$

 \circ Growth of matter density contrast in Newtonian gauge & "quasi-static" limit ($k>>aHc_s^{-1}$):

$$\ddot{\delta}_m + (2+\gamma)H\dot{\delta}_m = \frac{3}{2}H^2\Omega_m\mu_\Phi\delta_m$$
 ACDM: $\mu_\Phi=1$, $\gamma=0$

No KMM: $\mu_\Phi \geq 1$, $\gamma=0$ KMM: can have $\mu_\Phi < 1$ & additional friction, $\gamma \neq 0$

ullet Growth of matter density contrast in Newtonian gauge & "quasi-static" limit ($k>>aHc_s^{-1}$):

$$\ddot{\delta}_m + (2+\gamma) H \dot{\delta}_m = \frac{3}{2} H^2 \Omega_m \mu_\Phi \delta_m$$
 ACDM: $\mu_\Phi = 1$, $\gamma = 0$

No KMM: $\mu_\Phi \geq 1$, $\gamma = 0$ KMM: can have $\mu_\Phi < 1$ & additional friction, $\gamma \neq 0$

• Time dependence of the parameters: focus only on KMM, $\alpha_B=\alpha_T=0\,, M(t)=M_{\rm Pl}$

$$H^{2} = H_{0}^{2} \left[\Omega_{m0} a^{-3} + 1 - \Omega_{m0} \right] \qquad \alpha_{I}(t) = \alpha_{I,0} \frac{1 - \Omega_{m}(t)}{1 - \Omega_{m,0}} \qquad I = K, H$$

ullet Growth of matter density contrast in Newtonian gauge & "quasi-static" limit ($k>>aHc_s^{-1}$):

$$\ddot{\delta}_m + (2+\gamma) H \dot{\delta}_m = \frac{3}{2} H^2 \Omega_m \mu_{\Phi} \delta_m$$

 Λ CDM: $\mu_{\Phi} = 1, \gamma = 0$

No KMM: $\mu_\Phi \geq 1\,, \gamma = 0$ $\,$ KMM: can have $\,\mu_\Phi < 1\,$ & additional friction, $\gamma \neq 0$

ullet Time dependence of the parameters: focus only on KMM, $lpha_B=lpha_T=0\,, M(t)=M_{
m Pl}$

$$H^{2} = H_{0}^{2} \left[\Omega_{m0} a^{-3} + 1 - \Omega_{m0} \right] \qquad \alpha_{I}(t) = \alpha_{I,0} \frac{1 - \Omega_{m}(t)}{1 - \Omega_{m,0}} \qquad I = K, H$$

Stability conditions (no ghost & gradients instabilities):

$$\alpha_K \ge 0$$
, $0 \le \alpha_H \le \frac{2}{3\Omega_m} \implies \mu_{\Phi} = 1 - \gamma \le 1$

stability implies weakening of gravity!

Effect of Kinetic Matter Mixing

• Phenomenology beyond QS limit: Boltzmann codes. COOP (Huang), EFTCAMB (Hu, Raveri, Frusciante, Silvestri), hi_class (Zumalacarregui, Bellini, Sawicki, Lesgourgues)

Effect of Kinetic Matter Mixing

• Phenomenology beyond QS limit: Boltzmann codes. COOP (Huang), EFTCAMB (Hu, Raveri, Frusciante, Silvestri), hi_class (Zumalacarregui, Bellini, Sawicki, Lesgourgues)

Effect of Kinetic Matter Mixing

• The effect of KMM goes in the direction of alleviating the tension between the Planck satellite measurements and lensing observations

Power Spectrum

Excellent agreement with QS solution of

$$\ddot{\delta}_m + (2 + \gamma) H \dot{\delta}_m = \frac{3}{2} H^2 \Omega_m \mu_{\Phi} \delta_m$$

Conclusions

- Effective Theory of Dark Energy: a unifying description of scalar-tensor theories of gravity, general but effective (stability, parametrise deviations from GR at perturbative level), based on symmetries
- Impact on observables: we can find dark energy in perturbations!
- We can fully solve equations at all scales thanks to Boltzmann codes
- O Kinetic Matter Mixing: weakens gravity when stability conditions are imposed. A way to alleviate tensions?

CMB

Lensing

Friction with KMM

$$\gamma = \frac{\log(1+\lambda^2)}{d\log a} \qquad \lambda^2 = \frac{3(\rho_m + p_m)}{M^2 H^2 \alpha c_s^2} \alpha_H^2$$

Modified Gravity+KMM

$$ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(t)(1-2\Psi)d\vec{x}^{2}$$

$$rac{
abla^2\Psi}{a^2} = rac{3}{2}H^2\Omega_{
m m}\mu_\Psi\delta_{
m m} + \lambda^2\left(rac{lpha_B}{lpha_H} - 1
ight)Hrac{
abla^2v_{
m m}}{a^2}$$

 $rac{
abla^2}{\sigma^2}(\Phi+\Psi)=rac{3}{2}H^2\Omega_{
m m}(\mu_\Psi+\mu_\Phi)\delta_{
m m}$

$$-\left[\left(1-\frac{\alpha_B}{\alpha_H}\right)\lambda^2-\gamma\right]H\frac{\nabla^2 v_{\rm m}}{a^2}$$

Euler equation:

$$\dot{v}_{\mathrm{m}} = -\Phi$$

Continuity equation:

$$\dot{\delta}_m = -rac{
abla^2 v_{
m m}}{a^2}$$

ENERGY-MOMENTUM CONSERVATION