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ΛCDM and beyond 

 ΛCDM predicts unique growth of structure. Compatible with data, but space for deviations

 Alternative models predict more dynamics (& free parameters) at the level of perturbations

 10-102 improvement expected in measurements of growth of structures. Deviations testable.

WHY ?

HOW ? EFFECTIVE THEORY OF DARK ENERGY

 Parametrizes linear perturbations in single scalar field models

  Simple, minimal way to bridge theory and observations. Deviations from GR as relevant 
parameters

 In this talk: effect of kinetic mixing between matter and scalar (Kinetic Matter Mixing-KMM) 



 Scalar breaks time diffs and preserves times diffs - add all terms compatible with this pattern in 
unitary gauge & ADM (3+1) decomposition

 Linear perturbations, one d.o.f. without higher derivatives:

Gravitational sector: a general action

 ADM (3+1) decomposition in unitary gauge: ADM (3+1) decomposition in unitary gauge:
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2.  Action: all terms that respect spatial diffs in the action (Jordan frame)

1.  Scalar field breaks time diffs; gravitational action preserves spatial diffs
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3.  Expand at quadratic order (i.e. linear theory)
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Kinetic mixing
gravity-scalar Tensor speed excess “Beyond Horndeski”/ 

GLPV



Disformal couplings to matter 

Bettoni and Liberati ’13, Gleyzes et al. ’14, Domnech, Naruko, Sasaki’15

X ⌘ gµ⌫@µ�@⌫�

 Structure of the action unchanged under transformation:

g̃µ⌫ = C(�)gµ⌫ +D(�, X)@µ�@⌫�

↵̃I = FI (↵J)S[gµ⌫ ,↵I ] = S̃[g̃µ⌫ , ↵̃I ]



 Couple matter to a Jordan frame metric of this form:

Disformal couplings to matter 

3 new parameters

Bettoni and Liberati ’13, Gleyzes et al. ’14, Domnech, Naruko, Sasaki’15

X ⌘ gµ⌫@µ�@⌫�
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Z
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1504.05481 with J. Gleyzes, D. Langlois, F. Vernizzi
1609.01272 with G. D’Amico, Z. Huang, F. Vernizzi

 Structure of the action unchanged under transformation:
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Kinetic Matter Mixing

 “Beyond Horndeski” = Kinetic Matter Mixing (KMM) with frame-invariant dispertion relation:
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Kinetic Matter Mixing

KMM: can have                & additional friction, 

�̈m + (2 + �)H �̇m =
3

2
H2⌦mµ��m

 Growth of matter density contrast in Newtonian gauge & “quasi-static” limit (                     ):k >> aHc�1
s

No KMM: µ� < 1 � 6= 0

 ΛCDM: 

µ� � 1 , � = 0

µ� = 1 , � = 0



Kinetic Matter Mixing
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s

KMM: can have                & additional friction, No KMM: µ� < 1 � 6= 0

 ΛCDM: 
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↵I(t) = ↵I,0
1� ⌦m(t)

1� ⌦m,0

To focus on the e↵ects of KMM, we set

↵B = ↵M = ↵T = 0 . (4.2)

Moreover, we parametrize the time dependence of ↵K and ↵H as
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⌦DE(t)

⌦DE,0
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⌦DE(t)

⌦DE,0
, (4.3)

where ⌦DE is the fractional energy density of dark energy, defined as ⌦DE ⌘ 1�P

I ⌦I , where the
sum is over all matter species (baryons, photons, neutrinos and CDM).

For the sake of clarity, in the following discussion we will simplify the above parametrization and
consider only baryons and CDM in the matter sector. This is justified by the fact that according
to this parametrization, the e↵ects of dark energy become relevant only at late time. However,
we stress that the numerical calculation performed with COOP contains the full matter sector,
including (massless) neutrinos. Under these simplifying assumptions the background expansion
history becomes

H2 = H2
0
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�3 + 1� ⌦m0
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Moreover, in this case the speed of scalar fluctuations (see eq. (2.18)) simplifies to
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↵H

⇥

2 + 3⌦m(1� ↵H)
⇤

↵K
. (4.5)

Requiring the absence of ghosts (↵ > 0, see definition in eq. (2.13)) and gradient instabilities,
respectively implies that

↵K � 0 , 0  ↵H  1 +
2

3⌦m
. (4.6)

In the following we set the current value of ↵K to unity, ↵K,0 = 1 and we plot the e↵ect of ↵H

in terms of four di↵erent values of this parameter today, i.e. ↵H,0 = 0.06, 0.12, 0.24 and 0.48,
which are always in the stability window (4.6). Note that to avoid that scalar fluctuations become
superluminal in the past we must require

↵H  1

5
↵K . (4.7)

Just for the purpose of illustration, in the next two subsections we ignore constraints from super-
luminality, as we need large values of ↵H to better visualise the e↵ects on the observables.

4.1 Matter power spectrum

On short scales, increasing ↵H,0 suppresses the power spectrum of matter fluctuations, shown as a
function of k in Fig. 1. On these scales we can neglect the velocity potential in the definition of the
comoving matter density contrast, eq. (4.1), which reduces to �m in the Newtonian gauge, �m ⇡ �m.
Moreover, to understand the power suppression we can apply the quasi-static approximation,
i.e. eq. (3.27). Specializing to the case with only nonvanishing ↵K and ↵H and using the time
parametrization above, µ� and � in eq. (3.27), defined in eqs. (3.24) and (3.25), become

µ� = 1� � , � = �⌦m
9↵H(2� 4⌦m � 3⌦2
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(2 + 3⌦m)
⇥
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 Time dependence of the parameters: focus only on KMM, 

I = K,H

↵B = ↵T = 0 ,M(t) = MPl



Kinetic Matter Mixing
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 Growth of matter density contrast in Newtonian gauge & “quasi-static” limit (                     ):k >> aHc�1
s

 Stability conditions (no ghost & gradients instabilities):

stability implies weakening of gravity! 
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Effect of Kinetic Matter Mixing

 Phenomenology beyond QS limit: Boltzmann codes. COOP (Huang), EFTCAMB (Hu, Raveri, 

Frusciante, Silvestri), hi_class (Zumalacarregui, Bellini, Sawicki, Lesgourgues)



Effect of Kinetic Matter Mixing
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Figure 5: The quantity f�8 as a function of redshift for di↵erent values of ↵H,0. The plot also shows the
measurements of f�8 and their respective 1-� errors from several redshift surveys: 6dF GRS [96], SDSS
DR7 MGS [97], GAMA [98], SDSS DR12 LRG [85], WiggleZ [99] and VIPERS [100]. When possible, we
plotted conditional constraints assuming a ⇤CDM background cosmology with Planck 2015 parameters. In
particular, the WiggleZ constraints were taken from Fig. 16 of [67].

in the zero sound-speed limit).
More generally, one could try to leave untouched the dark matter sector and employ less specific

scalar-tensor theories. For instance, it has been noted in [34] (see also [95]) that self-accelerating
models within the Horndeski class with the same expansion history as ⇤CDM generally supress
the linear growth rate around redshift 0.5 . z . 1, despite the scalar fifth-force being attractive
(see eq. (3.28)). Looking at eq. (3.27), this can be understood by the fact that ⌦m on the right-
hand side, defined in eq. (2.14), contains the time-dependent e↵ective Planck mass M2 at the
denominator. The enhancement of the latter due to self-acceleration lowers ⌦m with respect to
the standard ⇤CDM case at intermediate redshifts, overcompensating µ� > 1.

As we have seen above, when the stability condition (4.6) is imposed the scalar force exchanged
by ⇡ in the presence of KMM is repulsive and small-scale structures are damped by a friction
stronger than that provided by the Hubble expansion, see eq. (4.8), even in the absence of self-
acceleration and for a ⇤CDM background expansion. In light of these facts, we consider the
possibility of solving the aforementioned tension with KMM.

To illustrate this, we compute �8 at redshift z = 0 as a function of ↵H,0 using COOP for the
cosmological parameters given at the beginning of the section. As expected from our discussion
above, this yields a linear relation with ↵H,0, i.e.

�8 ' (0.84� 0.18↵H,0) · As

2.2⇥ 10�9
. (4.29)

In Fig. 4 we show this relation together with a set of large scale structure (weak lensing and cluster
counts) measurements constraining �8. Two remarks are in order. First, it would be misleading to
compute the value of ↵H,0 that best fits the data. Indeed, the constraints on �8 reported from the
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 Phenomenology beyond QS limit: Boltzmann codes. COOP (Huang), EFTCAMB (Hu, Raveri, 

Frusciante, Silvestri), hi_class (Zumalacarregui, Bellini, Sawicki, Lesgourgues)



Effect of Kinetic Matter Mixing

 The effect of KMM goes in the direction of alleviating the tension between the Planck 
satellite measurements and lensing observations
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Figure 4: Relation between ↵H,0 and the corresponding �8 at redshift z = 0, calculated using eq. (4.29),
respectively in the top and bottom x-axes. The ↵H,0 = 0 line corresponds to ⇤CDM and the region
↵H,0 < 0 is shaded because it is out of the stability window (4.6). The plot also shows the measurements
of �8 and their respective 1-� errors from several collaborations.11 In particular, the constraints based on
cluster counts (red dashed lines) are from Planck 2013 [81] and SPT 2016 [83]. The constraints based on
weak lensing observations (blue solid lines) are from several analysis of the CFHTLens, by Kilbinger et
al. 2013 [77], Köhlinger et al. 2015 [80] and Hildebrandt et al. 2016 [84], and from the cosmic shear study
of DES 2015 [87].

while it has been alleviated by the analysis of the latest data of the SDSS-III Baryon Oscillation
Spectroscopic Survey [85]. Another aspect of this tension is reflected in redshift space distortion
measurements [86], which indicate that the combination of f�8—where f ⌘ d ln �m/d ln a is the
growth factor—is lower with respect to the value inferred from the Planck results.

Even though the tension is not extremely significant and depends on the uncertainties of the
modeling of the non-linear scales and, for the redshift-space distortion measurements, of the galaxy
bias, it might indicate a deviation from the concordance model. For instance, some attempts have
been made to solve this tension using massive (active and sterile) neutrinos [89,90]. However, the
most recent Planck analysis seems to disfavour this solution [67].

Given that little is known of the clustering properties of dark energy, it is natural to try
to explain this tension by considering a model where deviations from the concordance one are
restricted only on short scales. A recent proposal in this direction has been undertaken in [91] by
exploiting the so-called “dark degeneracy” between dark matter and dark energy [92] and replacing
part of the dark matter by a perfect-fluid clustering dark energy with sound speed of fluctuations
smaller than unity (see for instance [93,94] for a phenomenological study of clustering dark energy

11An analysis of the e↵ects of systematics on the CFHTLenS data, not shown in Fig. 4, has been carried out by
Joudaki et al. in [88]. Moreover, we show the Planck 2013 cluster-based constraint because the more recent analysis
by the Planck collaboration [82] did not release numerical values. However, the Planck 2015 results were found in
agreement with the previous ones [83].
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Joudaki et al ‘16



Power Spectrum

 Excellent agreement with QS 
solution of 

�̈m + (2 + �)H �̇m =
3
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Conclusions

 Effective Theory of Dark Energy: a unifying description of scalar-tensor theories of 
gravity, general but effective (stability, parametrise deviations from GR at perturbative 
level), based on symmetries

 Impact on observables: we can find dark energy in perturbations!

 We can fully solve equations at all scales thanks to Boltzmann codes 

 Kinetic Matter Mixing: weakens gravity when stability conditions are imposed. A way to 
alleviate tensions?



Figure 7: E↵ect of braiding (↵B) on the CMB lensing potential (left panel) and on the CMB anisotropies
(right panel) angular power spectra. The lower plots display the ratio of these angular spectra with the
respective spectra for ↵B = 0.

D.2 Cosmic microwave background

In Fig. 7 we plot the angular power spectrum of the lensing potential (left panel) and of the CMB
anisotropies (right panel). A negative braiding parameter ↵B induces an enhancement in the
lensing potential. Similarly to what done in the previous section, we can understand this e↵ect as
a modification of the Weyl potential, expressed in terms of the parameter µWL in eq. (4.23). Setting
↵M = ↵T = ↵H = 0, this reads (see also [35] for an analysis using the quasi-static approximation)

µWL � 2 = � 2↵B

1 + ↵B + 3⌦m/2
. (D.13)

This relation shows that for negative values of ↵B, the Weyl potential is enhanced for all redshifts.
Comparing with the e↵ect of ↵H shown in Fig. 3, we notice that here the e↵ect is larger at smaller
l; this is due to the fact that, contrarily to the ↵H case, here µWL � 2 does not change sign at low
redshift, and contributes also to low multipoles.

Let us turn now to the CMB angular power spectrum, right panel of Fig. 7. Increasing �↵B

enhances the lensing potential, thus increasing the smearing e↵ect on the CMB acoustic peaks, as
shown on the right lower panel. The suppression of the ISW e↵ect can be understood again by
looking at eq. (4.26). Now

d lnµWL

d ln a
= � 15↵B⌦m

(2 + 3⌦m)(1 + ↵B + 3⌦m/2)
, (D.14)
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Figure 3: E↵ect of KMM (↵H) on the CMB lensing potential (left panel) and on the CMB anisotropies
(right panel) angular power spectra. The lower plots display the ratio of these angular spectra with the
respective spectra for ↵H = 0.

multipole l. As a rough approximation, we can understand the CMB lensing potential by looking
at the Weyl potential (�+ )/2 in the quasi-static regime, i.e. using eq. (3.29). Indeed, the bulk
of the CMB lensing kernel is at 0.5 . z . 6 [76], where deviations from this approximation are
below ⇠ 5% for the values of ↵H,0 that we considered.

Let us define the quantity [50]

µWL ⌘ 2r2(�+ )

3a2H2⌦m�m
. (4.23)

For ⇤CDM, µWL = 2; in general, this quantity characterizes the deviations in weak lensing ob-
servables from the ⇤CDM case. This definition cannot be directly applied to eq. (3.29), because
of the presence of the terms proportional to �̇m on the right-hand side of this equation. In the
presence of KMM, ↵H 6= 0, these terms equally contribute to the modifications of the Weyl po-
tential as those proportional to �m and cannot be neglected. However, a fair approximation to
simplify the discussion is to replace �̇m by its expression in matter domination, �̇m ' H�m. Setting
↵B = ↵M = ↵T = 0 and employing the approximation above in eq. (3.29), the e↵ect of ↵H in weak
lensing observables can be rewritten as

µWL � 2 = ↵H
8� 9⌦m(1 + ⌦m)

2 + 3(1� ↵H)⌦m
. (4.24)

One can verify that this quantity is negative for z & 0.5, i.e. inside the bulk of the CMB lensing
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Figure 7: E↵ect of braiding (↵B) on the CMB lensing potential (left panel) and on the CMB anisotropies
(right panel) angular power spectra. The lower plots display the ratio of these angular spectra with the
respective spectra for ↵B = 0.

D.2 Cosmic microwave background

In Fig. 7 we plot the angular power spectrum of the lensing potential (left panel) and of the CMB
anisotropies (right panel). A negative braiding parameter ↵B induces an enhancement in the
lensing potential. Similarly to what done in the previous section, we can understand this e↵ect as
a modification of the Weyl potential, expressed in terms of the parameter µWL in eq. (4.23). Setting
↵M = ↵T = ↵H = 0, this reads (see also [35] for an analysis using the quasi-static approximation)

µWL � 2 = � 2↵B

1 + ↵B + 3⌦m/2
. (D.13)

This relation shows that for negative values of ↵B, the Weyl potential is enhanced for all redshifts.
Comparing with the e↵ect of ↵H shown in Fig. 3, we notice that here the e↵ect is larger at smaller
l; this is due to the fact that, contrarily to the ↵H case, here µWL � 2 does not change sign at low
redshift, and contributes also to low multipoles.

Let us turn now to the CMB angular power spectrum, right panel of Fig. 7. Increasing �↵B

enhances the lensing potential, thus increasing the smearing e↵ect on the CMB acoustic peaks, as
shown on the right lower panel. The suppression of the ISW e↵ect can be understood again by
looking at eq. (4.26). Now

d lnµWL

d ln a
= � 15↵B⌦m

(2 + 3⌦m)(1 + ↵B + 3⌦m/2)
, (D.14)
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Friction with KMM

Figure 2: Friction term � given in eq. (4.8), as a function of redshift.

the parametrization chosen in this section, these equations read

�k2

a2
 + Ḣ(�m +�DE) = 0 , (4.10)

�� = ↵H(⇡̇ � �) , (4.11)

 ̈+H(3 ̇+ �̇) + (2Ḣ + 3H2)� = 0 , (4.12)

�̇DE = �↵H
k2

a2
H

Ḣ
(⇡̇ � �) , (4.13)

where we have used the background Friedmann equations and the comoving energy density contrast
associated to dark energy, �DE, is defined as

�DE ⌘ �↵K

2
H2(⇡̇ � �)� ↵H

k2

a2
( +H⇡) . (4.14)

Equation (4.10) has been obtained from combining the “00” and “0i” scalar components of the
Einstein equations, eqs. (4.11) and (4.12) are respectively the traceless and trace part of the
“ij” scalar components of the Einstein equations and eq. (4.13) is the evolution equation of ⇡.8

(The evolution equations for the matter density contrast �m is automatically satisfied by these
equations.)

In the absence of KMM, i.e. for ↵H = 0, eqs. (4.10)–(4.13) are solved by the standard ⇤CDM
solution with adiabatic initial conditions [10], i.e.

� = �✏̇ ,  = H✏� ⇣0 , �m = �(0)
m ⌘ k2

a2
H✏� ⇣0

Ḣ
, �DE = 0 , (↵H = 0) (4.15)

where ⇣0 is the (conserved) comoving curvature perturbation on super-Hubble scales and ✏ is
defined as

✏ ⌘ ⇣0
a

Z

adt . (4.16)

8The complete Einstein equations can be found in [10].
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�̈m + (2 + �)H �̇m =
3

2
H2⌦mµ��m

� =

log(1 + �2
)

d log a
�2 =

3 (⇢m + pm)

M2H2↵c2s
↵2
H



Modified Gravity+KMM

ds

2 = �(1 + 2�)dt2 + a

2(t)(1� 2 )d~x2


