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Introduction

o Cores of galaxies extremely interesting: interplay of high-energy
processes, jets, putative DM annihilation...

e Difficult to probe: high angular resolution needed

o Inner DM density profile critical for indirect searches but poorly
constrained

@ Probe DM at horizon scales with the Event Horizon Telescope
(EHT)

@ Focus on M87, a primary target of the EHT

[Credit: NASA and The Hubble Heritage Team (STScI/AURA)]



Dark matter spikes at the centers of galaxies?

@ DM density profile very uncertain below parsec scales

@ Can be significantly affected by supermassive black holes
(SMBH)

o Adiabatic (slow) growth of SMBH at the center of DM halo
= spike: strong enhancement of the DM density in the inner
region [Gondolo & Silk 1999]
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= strong annihilation signals

@ Adiabatic spikes not observed yet
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Dark matter spikes affected by competing
dynamical processes

Disruptive dynamical effects

@ Instantaneous BH growth (uiio etar 2001
o Off-centered BH formation akano & Makino 1999; Ultio et al. 2001]
@ Halo mergers imerit etal 2002)

("] Stellar dynamical heating [Gnedin & Primack 2004; Merritt 2004]

Dynamical effects strengthening the case for DM spikes

@ Core-collapse from DM self-interactions (ostiker 20001

o Efficient replenishment of the loss cone from steep stellar cusp
[Zhao et al. 2002]

@ Triaxiality of DM halo = enhanced DM accretion

[Merritt & Poon 2004]




Additional motivation for spike in M87

Dynamical relaxation time in the core of a galaxy

MBH > 14
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@ To be compared with the age of the Universe (~ 1010 yr)
o Stellar dynamical heating potentially relevant for the Milky Way

@ Negligible for galaxies with sufficiently massive central BHs

Negligible effect of stellar heating in dynamically young galaxies

M87 (Mpy ~ 6 x 10° M) dynamically young
= stellar heating negligible
= spike more likely to have survived in M87




The Event Horizon Telescope

@ Idea: exploit the morphology of the DM-induced synchrotron
signal in the vicinity of the central SMBH

@ Previously lack of angular resolution of existing facilities
e Event Horizon Telescope (EHT): game changer
@ Network of mm/submm telescopes

@ Very long baseline interferometry = Earth-sized telescope
= micro-arcsecond-scale angular resolution

[Fish et al. 2013]



Black hole shadows

Observing the shadow of the SMBH in M87

@ Shadow: disk of local darkness surrounded by brighter photon
ring from gravitational lensing

o SMBH at the center of M87: angular Schwarzschild radius
~ 8 uas, similar to Sgr A* (~ 10 pas)
= excellent target for the EHT
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Probing dark matter at the center of M87 with the
Event Horizon Telescope

Probing the DM distribution close to the BH
e EHT can probe the vicinity of the BH at the center of M87

@ Observe shadow of the SMBH in the DM annihilation-induced
synchrotron signal at 230 GHz

DM-induced synchrotron intensity

@ Synchrotron radiation + advection of e* towards the BH

@ bb annihilation channel for illustration

@ Ray-tracing scheme to model radiative transfer in the vicinity of

the BH [Broderick 2006; Broderick & Loeb 2006]




BH shadow in DM-induced synchrotron signal

100 Spike, Schwarzschild Spike, maximally rotating
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[Lacroix et al. 2016]



Interferometric observables

o EHT interferometer — complex visibilities (Fourier transform of
the image)

o Currently sampling of the spatial-frequency plane too sparse to
directly reconstruct image

@ Visibility amplitude

@ Phase more difficult to obtain (atmospheric delays)
— closure phase (CP) from triangles of sites

@ Currently only one triangle: Hawaii-California-Arizona
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Visibility amplitude: DM spike
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3.0

@ Photon ring around BH shadow = observable small-scale

structure for the EHT

@ Adequate fit to EHT data with spike of annihilating DM
@ Very stringent constraints on annihilation cross—section' a few

10731 ecm3 s~

Lat 10 GeV and ~ 102 cm3 s~

Lat1 TeV
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Visibility amplitude: astrophysical contribution

But astrophysical component should be included — degeneracy
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@ DM may account for significant portion of mm emission from
M87 core

@ Potentially even more stringent constraints with jet component
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Closure phase

o CP of DM-induced emission consistent with low values
observed

@ Small CPs also typical of astrophysical models on the
Hawaii-California-Arizona triangle

e Additional sites = additional triangles = constraints
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Conclusion

@ First model of synchrotron emission from spike of annihilating
DM at horizon scale with BH lensing

@ DM-induced emission should be readily visible in EHT images

@ DM spike enhances the photon ring surrounding the BH
shadow
= observable small-scale feature for the EHT

o Adequate fit to current EHT data with DM spike
@ Stringent upper limits on DM annihilation cross-section (a few
10731 em? 571 at 10 GeV)

@ Jet contribution should be included
= energy budget
= potentially even stronger constraints

@ Future EHT observations with additional baselines
= discriminate between astrophysical and DM-dominated
models
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Thank you for your attention!
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Best-fit values
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