A unique probe of dark matter in the core of M87 with the Event Horizon Telescope

Based on Lacroix et al. 2016 [arXiv:1611.01961]

Thomas Lacroix Collaborators: M. Karami, A. E. Broderick, J. Silk, C. Bœhm

PONT 2017

April 27, 2017

Introduction

- Cores of galaxies extremely interesting: interplay of high-energy processes, jets, putative DM annihilation...
- Difficult to probe: high angular resolution needed
- Inner DM density profile critical for indirect searches but poorly constrained
- Probe DM at horizon scales with the Event Horizon Telescope (EHT)
- Focus on M87, a primary target of the EHT

Dark matter spikes at the centers of galaxies?

- DM density profile very uncertain below parsec scales
- Can be significantly affected by supermassive black holes (SMBH)
- Adiabatic (slow) growth of SMBH at the center of DM halo
 ⇒ spike: strong enhancement of the DM density in the inner region [Gondolo & Silk 1999]

$$\rho_{\rm sp}(r) \propto r^{-\gamma_{\rm sp}}, \quad \gamma_{\rm sp} \sim 7/3$$
(1)

- \Rightarrow strong annihilation signals
- Adiabatic spikes not observed yet

Dark matter spikes affected by competing dynamical processes

Disruptive dynamical effects

- Instantaneous BH growth [Ullio et al. 2001]
- Off-centered BH formation [Nakano & Makino 1999; Ullio et al. 2001]
- Halo mergers [Merritt et al. 2002]
- Stellar dynamical heating [Gnedin & Primack 2004; Merritt 2004]

Dynamical effects strengthening the case for DM spikes

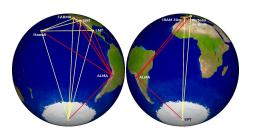
- Core-collapse from DM self-interactions [Ostriker 2000]
- Efficient replenishment of the loss cone from steep stellar cusp [Zhao et al. 2002]
- Triaxiality of DM halo ⇒ enhanced DM accretion

Additional motivation for spike in M87

Dynamical relaxation time in the core of a galaxy

$$t_{\rm r} \sim 2 \times 10^9 \text{ yr} \left(\frac{M_{\rm BH}}{4.3 \times 10^6 M_{\odot}}\right)^{1.4}$$
 (2)

- \bullet To be compared with the age of the Universe ($\sim 10^{10}~\text{yr})$
- Stellar dynamical heating potentially relevant for the Milky Way
- Negligible for galaxies with sufficiently massive central BHs

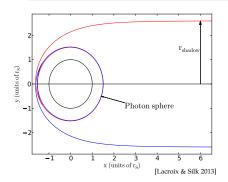

Negligible effect of stellar heating in dynamically young galaxies

M87 ($M_{\rm BH} \approx 6 \times 10^9~M_{\odot}$) dynamically young

- ⇒ stellar heating negligible
- \Rightarrow spike more likely to have survived in M87

The Event Horizon Telescope

- Idea: exploit the morphology of the DM-induced synchrotron signal in the vicinity of the central SMBH
- Previously lack of angular resolution of existing facilities
- Event Horizon Telescope (EHT): game changer
- Network of mm/submm telescopes
- Very long baseline interferometry ⇒ Earth-sized telescope
 ⇒ micro-arcsecond-scale angular resolution



[Fish et al. 2013]

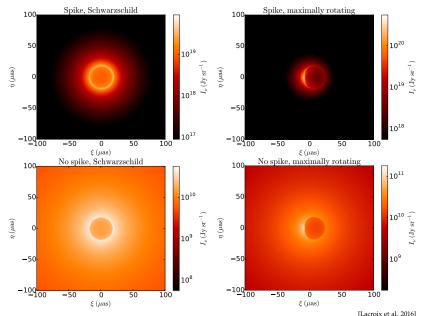
Black hole shadows

Observing the shadow of the SMBH in M87

- Shadow: disk of local darkness surrounded by brighter photon ring from gravitational lensing
- SMBH at the center of M87: angular Schwarzschild radius $\sim 8 \mu as$, similar to Sgr A* ($\sim 10 \mu as$)
 - ⇒ excellent target for the EHT

[Simulation; credit: Avery E. Broderick (University of Waterloo/Perimeter Institute)]

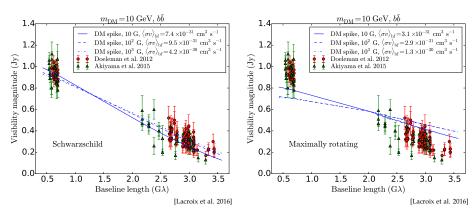
Probing dark matter at the center of M87 with the Event Horizon Telescope


Probing the DM distribution close to the BH

- EHT can probe the vicinity of the BH at the center of M87
- Observe shadow of the SMBH in the DM annihilation-induced synchrotron signal at 230 GHz

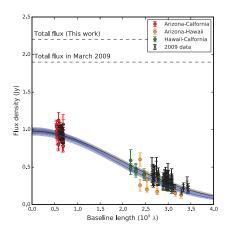
DM-induced synchrotron intensity

- Synchrotron radiation + advection of e^{\pm} towards the BH
- $b\bar{b}$ annihilation channel for illustration
- Ray-tracing scheme to model radiative transfer in the vicinity of the BH [Broderick 2006; Broderick & Loeb 2006]


BH shadow in DM-induced synchrotron signal

Interferometric observables

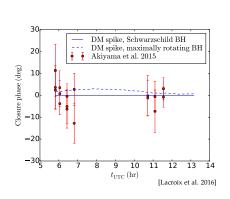
- ullet EHT interferometer o complex visibilities (Fourier transform of the image)
- Currently sampling of the spatial-frequency plane too sparse to directly reconstruct image
- Visibility amplitude
- Phase more difficult to obtain (atmospheric delays)
 - \rightarrow closure phase (CP) from triangles of sites
- Currently only one triangle: Hawaii-California-Arizona

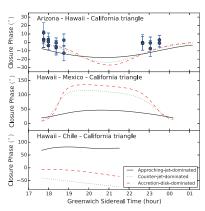

Visibility amplitude: DM spike

- Photon ring around BH shadow ⇒ observable small-scale structure for the EHT
- Adequate fit to EHT data with spike of annihilating DM
- Very stringent constraints on annihilation cross-section: a few 10^{-31} cm³ s⁻¹ at 10 GeV and $\sim 10^{-27}$ cm³ s⁻¹ at 1 TeV

Visibility amplitude: astrophysical contribution

But astrophysical component should be included \rightarrow degeneracy




[Akiyama et al. 2015]

- DM may account for significant portion of mm emission from M87 core
- Potentially even more stringent constraints with jet component

Closure phase

- CP of DM-induced emission consistent with low values observed
- Small CPs also typical of astrophysical models on the Hawaii-California-Arizona triangle
- Additional sites ⇒ additional triangles ⇒ constraints

Conclusion

- First model of synchrotron emission from spike of annihilating DM at horizon scale with BH lensing
- DM-induced emission should be readily visible in EHT images
- DM spike enhances the photon ring surrounding the BH shadow
 - ⇒ observable small-scale feature for the EHT
- Adequate fit to current EHT data with DM spike
- Stringent upper limits on DM annihilation cross-section (a few $10^{-31}~{\rm cm^3~s^{-1}}$ at 10 GeV)
- Jet contribution should be included
 - \Rightarrow energy budget
 - ⇒ potentially even stronger constraints
- Future EHT observations with additional baselines
 - \Rightarrow discriminate between astrophysical and DM-dominated models

Thank you for your attention!

Best-fit values

Schwarzschild

	$m_{\rm DM} = 10~{\rm GeV}$	$m_{\rm DM} = 10^2 {\rm GeV}$	$m_{\rm DM} = 10^3 {\rm GeV}$
B = 10 G	$\langle \sigma v \rangle_{bf} = 7.4 \times 10^{-31} \text{ cm}^3 \text{ s}^{-1}, \chi^2_{red} = 1.4$	$\langle \sigma v \rangle_{bf} = 2.8 \times 10^{-29} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 1.4$	$\langle \sigma v \rangle_{bf} = 1.2 \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 1.4$
$B = 10^2 \text{G}$	$\langle \sigma v \rangle_{bf} = 9.5 \times 10^{-31} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 1.5$	$\langle \sigma v \rangle_{bf} = 4.4 \times 10^{-29} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 1.5$	$\langle \sigma v \rangle_{bf} = 1.8 \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 1.5$
$B = 10^3 \text{G}$	$\langle \sigma v \rangle_{bf} = 4.2 \times 10^{-30} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 1.8$	$\langle \sigma v \rangle_{bf} = 1.8 \times 10^{-28} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 1.8$	$\langle \sigma v \rangle_{bf} = 8.1 \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 1.7$

Maximally rotating

	$m_{\rm DM} = 10~{\rm GeV}$	$m_{\rm DM} = 10^2 \ {\rm GeV}$	$m_{\rm DM}=10^3~{\rm GeV}$
B = 10 G	$\langle \sigma v \rangle_{bf} = 3.1 \times 10^{-31} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 6.5$	$\langle \sigma v \rangle_{bf} = 1.2 \times 10^{-29} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 6.0$	$\langle \sigma v \rangle_{bf} = 5.2 \times 10^{-28} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 5.8$
$B = 10^2 \text{G}$	$\langle \sigma v \rangle_{\rm bf} = 2.9 \times 10^{-31} \text{ cm}^3 \text{ s}^{-1}, \chi_{\rm red}^2 = 11$	$\langle \sigma v \rangle_{bf} = 1.3 \times 10^{-29} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 11$	$\langle \sigma v \rangle_{bf} = 5.6 \times 10^{-28} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 11$
$B = 10^3 \text{G}$	$\langle \sigma v \rangle_{\text{bf}} = 1.3 \times 10^{-30} \text{ cm}^3 \text{ s}^{-1}, \chi_{\text{red}}^2 = 12$	$\langle \sigma v \rangle_{bf} = 5.6 \times 10^{-29} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 12$	$\langle \sigma v \rangle_{bf} = 2.5 \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}, \chi_{red}^2 = 12$