Progress on Old and New Themes in cosmology 2017

Split Light Dark Matter

Xiaoyong Chu

April 27th 2017, Avignon

Work with Nicolás Bernal and Josef Pradler (1702.04906 and on-going study)

Outline:

Self-Interacting Dark Matter (SIDM)

2 Split DM model

3 DM self-interaction in astrophysics

More and Summary

• Core/cusp problem.-ACDM simulations predict inner region of DM haloes is cuspy (NFW-like) while observations from dwarf galaxies prefer a core (ISO-like). [Moore 1994, Flores et al. 1994, Naray et al. 2011, Ferrero et al. 2011, Boylan-Kolchin et al. 2011/2012, Papastergis et al. 2014...]

• Core/cusp problem.-ACDM simulations predict inner region of DM haloes is cuspy (NFW-like) while observations from dwarf galaxies prefer a core (ISO-like). [Moore 1994, Flores et al. 1994, Naray et al. 2011, Ferrero et al. 2011, Boylan-Kolchin et al. 2011/2012, Papastergis et al. 2014...]

• "Too-big-to-fail" problem.-ACDM simulations also produce heavier/denser DM subhalos, whose characteristic dwarfs are not observed. [Boylan-Kolchin et al. 2011, Ferrero et al. 2011, Boylan-Kolchin et al. 2012, Papastergis et al. 2014...]

Xiaoyong Chu

· Core/cusp problem.-ACDM simulations predict inner region of DM haloes is cuspy (NFW-like) while observations from dwarf galaxies prefer a core (ISO-like). [Moore 1994, Flores et al. 1994, Naray et al. 2011, Ferrero et al. 2011, Boylan-Kolchin et al. 2011/2012, Papastergis et al. 2014...]

· "Too-big-to-fail" problem.-ACDM simulations also produce heavier/denser DM subhalos, whose characteristic dwarfs are not observed. [Boylan-Kolchin et al. 2011, Ferrero et al. 2011, Boylan-Kolchin et al. 2012, Papastergis et al. 2014...]

Diversity in galactic rotation curves?-Interplay between baryonic and SIDM

effects. [Kaplinghat et al. 2013, Kamada et al. 2016, ...]

Xiaovong Chu

• Core/cusp problem.-ACDM simulations predict inner region of DM haloes is cuspy (NFW-like) while observations from dwarf galaxies prefer a core (ISO-like). [Moore 1994, Flores et al. 1994, Naray et al. 2011, Ferrero et al. 2011, Boylan-Kolchin et al. 2011/2012, Papastergis et al. 2014...]

• "Too-big-to-fail" problem.-ACDM simulations also produce heavier/denser DM subhalos, whose characteristic dwarfs are not observed. [Boylan-Kolchin et al. 2011, Ferrero et al. 2011, Boylan-Kolchin et al. 2012, Papastergis et al. 2014...]

• Diversity in galactic rotation curves?-Interplay between baryonic and SIDM effects. [Kaplinghat et al. 2013, Kamada et al. 2016, ...]

• Possible hints in colliding clusters?-Offset in mass distributions of DM and gas in colliding clusters [Massey et al. 2015, Kahlhoefer et al. 2015, Robertson et al. 2016, ...]

Self-interacting DM (SIDM) solution:

Self-scattering cross section per mass, $\sigma_{\rm SI}/m_{\rm DM} \gtrsim 0.1 \, {\rm cm}^2/{\rm g} \, (\sim 0.2 \, {\rm barn}/{\rm GeV})$, flattening central regions of dark halos. [Rocha et al. 2012, Peter et al. 2012, ...]

More signatures from SIDM?

- \cdot Velocity-dependent self-interaction: a light mediator $_{[Spergel & Steinhardt 1999]}$
- \cdot (Partially) dissipative dark matter: unbroken dark U(1) $_{\text{[Fan et al. 2013, ...]}}$

Self-interacting DM (SIDM) solution:

Self-scattering cross section per mass, $\sigma_{\rm SI}/m_{\rm DM} \gtrsim 0.1 \, {\rm cm}^2/{\rm g} \, (\sim 0.2 \, {\rm barn}/{\rm GeV})$, flattening central regions of dark halos. [Rocha et al. 2012, Peter et al. 2012, ...]

More signatures from SIDM?

- · Velocity-dependent self-interaction: a light mediator [Spergel & Steinhardt 1999]
- \cdot (Partially) dissipative dark matter: unbroken dark U(1) $_{\text{[Fan et al. 2013, ...]}}$
- · Split light dark matter: two nearly-degenerate states.

A new way to regularize DM self-interaction, leading to rich phenomena.

Outline

Self-Interacting Dark Matter (SIDM)

2 Split DM model

3 DM self-interaction in astrophysics

Split DM Model

Start with a pseudo-Dirac fermion, Ψ , with a U'(1) gauge boson V:

$$\mathcal{L}_{\Psi} = \bar{\Psi} \left(i \not \! D - m
ight) \Psi - \frac{\Delta m}{2} \left(\bar{\Psi}^{c} \Psi + h.c.
ight),$$

in which $\Delta m \ll m$.

Inelastic/excited dark matter to explain DAMA/3.5 keV [L. J. Hall et al. 1997, D.Smith et al. 2001, ...]. Xiaoyong Chu 4/14

Split DM Model

Start with a pseudo-Dirac fermion, Ψ , with a U'(1) gauge boson V:

$$\mathcal{L}_{\Psi} = \bar{\Psi} \left(i \not \! D - m
ight) \Psi - \frac{\Delta m}{2} \left(\bar{\Psi}^{c} \Psi + h.c.
ight),$$

in which $\Delta m \ll m$.

Symmetry breaking $(\Delta m \neq 0) \Rightarrow$ two nearly-degenerate mass eigenstates: lighter, stable dominant DM: $\chi_1 \simeq \frac{i}{\sqrt{2}} (\Psi - \Psi^c)$, (meta-)stable subleading DM: $\chi_2 \simeq \frac{1}{\sqrt{2}} (\Psi + \Psi^c)$,

which interact (assuming a heavier V) mainly via

$$ig_V\left(\overline{\chi_1}\gamma^\mu\chi_2
ight)V_\mu, \quad (\overline{\chi_1}\gamma^\mu\chi_1)V_\mu.$$

Inelastic/excited dark matter to explain DAMA/3.5 keV [L. J. Hall et al. 1997, D.Smith et al. 2001, ...]. Xiaoyong Chu 4/14

Assuming a decoupled dark sector and $m_V > 2m + \Delta m$:

Freeze-out via 4-body annihilation (e.g. $\chi_1\chi_1\chi_1\chi_2 \rightarrow \chi_1\chi_2$) decides

 $\Omega_{
m DM} = \Omega_{\chi_1} + \Omega_{\chi_2}$,

Two-body annihilation $\chi_2\chi_2 o \chi_1\chi_1$ (depending on $\Delta m/m$) decides

the relative abundance ratio: $R_0 = rac{\Omega_{\chi_2}}{\Omega_{\chi_1}} \ll 1$

Xiaoyong Chu

at present.

Assuming a decoupled dark sector and $m_V > 2m + \Delta m$:

Outline

Self-Interacting Dark Matter (SIDM)

2 Split DM model

3 DM self-interaction in astrophysics

4 More and Summary

Self-scattering diagrams

• Two-state scattering: $12 \rightarrow 12$;

- depending on the relative abundance of χ_2 , i.e. R_0 .

- Endothermic scattering: $11 \rightarrow 22$;
 - kinetically suppressed due to $\Delta m/m$.
- Loop-induced scattering: $11 \rightarrow 11$.
 - loop suppressed by $\mathcal{O}(g_V^4/\pi^2)$.

Self-scattering diagrams

Subleading component χ_2 plays an important role!

- Two-state scattering: $12 \rightarrow 12$;
 - depending on the relative abundance of χ_2 , i.e. R_0 .

(being dominant for light DM and $\Delta m/m \gg 10^{-5}$)

SIDM effective cross section

Effectively leading DM χ_1 only scatters with χ_2 :

$$\frac{\sigma_{\rm eff}^{\rm SI}}{m} \simeq R_0 \frac{\sigma_{12}}{m} \sim 0.1 - 1\,{\rm cm}^2/{\rm g}\,.$$

SIDM effective cross section

Effectively leading DM χ_1 only scatters with χ_2 :

$$\frac{\sigma_{\rm eff}^{\rm SI}}{m} \simeq R_0 \frac{\sigma_{12}}{m} \sim 0.1 - 1\,{\rm cm}^2/{\rm g}\,.$$

Recall some of the strongest constraints (most likely over-estimated)

• Displacement of stellar and DM mass in colliding clusters: $\sigma_{\rm SI}/m_{DM} \lesssim 0.47~{\rm cm}^2/{\rm g}$ [D.Harvey et al. 2015, ...],

Mass loss in Bullet cluster: $\sigma_{
m SI}/m_{DM} \lesssim 0.6 \, {
m cm}^2/{
m g}$ [S.W.Randall et al. 2007, ...],

- Ellipticities of cluster/galaxy halos: $\sigma_{\rm SI}/m_{DM} \lesssim 0.02 1 \, {\rm cm}^2/{\rm g}$ [Miralda-Escudé 2002, Buote et al. 2002, A.Peter et al. 2012, ...],
- Sub-halo evaporation (much weaker).

Examining bounds on $\sigma^{\rm SI}/m$ for split DM

· Colliding cluster bounds do not apply.

 χ_1 only scatters with $\chi_2 \Rightarrow most$ of χ_2 may get scattered away.

Bullet Cluster:

mass loss \leq 23% at 68% C.L.

[S.W.Randall et al. 2007]

Distorted Profile:

scattering fraction $\leq 10\%$ at 3σ C.L. (projected) [D.Harvey et al. 2016]

Examining bounds on $\sigma^{\rm SI}/m$ for split DM

· Colliding cluster bounds do not apply.

 χ_1 only scatters with $\chi_2 \Rightarrow most of \chi_2 may get scattered away.$

Bullet Cluster:

mass loss \leq 23% at 68% C.L.

[S.W.Randall et al. 2007]

Distorted Profile:

scattering fraction $\leq 10\%$ at 3σ C.L. (projected) [D.Harvey et al. 2016]

Neither significant mass loss nor offset between mass distributions of DM and gas during halo collision if $R_0 \le 5\% - 10\%$.

Examining bounds on σ^{SI}/m for split DM

· Ellipticity bounds do not necessarily apply.

Core-collapse of collisional DM: when inner halo heats up, it shrinks.

$$2 \mathrm{E}_{\mathrm{kin}} + \mathrm{V} \simeq \mathbf{0} \quad \Rightarrow \quad \mathrm{E}_{\mathrm{tot}} = \mathrm{E}_{\mathrm{kin}} + \mathrm{V} \simeq - \mathrm{E}_{\mathrm{kin}}.$$

DM $\chi_{1,2}$ only collide with each other & $\Omega_{\chi_1} \gg \Omega_{\chi_2}$,

 χ_2 in halos has much shorter relaxation time.

Examining bounds on σ^{SI}/m for split DM

· Ellipticity bounds do not necessarily apply.

Core-collapse of collisional DM: when inner halo heats up, it shrinks.

$$2 E_{\rm kin} + V \simeq \textbf{0} \quad \Rightarrow \quad E_{\rm tot} = E_{\rm kin} + V \simeq - E_{\rm kin}.$$

DM $\chi_{1,2}$ only collide with each other & $\Omega_{\chi_1} \gg \Omega_{\chi_2}$,

 χ_2 in halos has much shorter relaxation time.

 \Rightarrow It is plausible that χ_2 is more sensitive to core-collapse/assembly of SIDM/baryons.

Examining bounds on σ^{SI}/m for split DM

If $R_0(r) \uparrow$ with $r \downarrow$, it enhances DM scatterings at small radii, to avoid ellipticity bounds (at large radii).

also seed supermassive black holes(?) (for partially strongly SIDM [J. Pollack et al. 2015]).

Examining bounds on $\sigma^{\rm SI}/m$ for split DM

If $R_0(r)$ \uparrow with $r \downarrow$, it enhances DM scatterings at small radii, to avoid ellipticity bounds (at large radii).

also seed supermassive black holes(?) (for partially strongly SIDM [J. Pollack et al. 2015]).

Detailed investigation is required:

- Semi-analytical model of two-component gravitating fluid (for self-gravitating system of light/heavy stars [A.P.Lightman et al. 1978]),
- N-body cosmological simulation.

Examining bounds on $\sigma^{\rm SI}/m$ for split DM

If $R_0(r)$ \uparrow with $r \downarrow$, it enhances DM scatterings at small radii, to avoid ellipticity bounds (at large radii).

also seed supermassive black holes(?) (for partially strongly SIDM [J. Pollack et al. 2015]).

Detailed investigation is required:

- Semi-analytical model of two-component gravitating fluid (for self-gravitating system of light/heavy stars [A.P.Lightman et al. 1978]),
- N-body cosmological simulation.

More generally:

· Actual abundance of χ_2 depends on merger history of halos. R_0 may be smaller in more massive halos.

Outline

Self-Interacting Dark Matter (SIDM)

- 2 Split DM model
- 3 DM self-interaction in astrophysics
- More and Summary

Direct detection

V-portal: Introducing gauge mixing between U'(1) and $U_Y(1)$:.

$$\mathcal{L}_{\mathrm{portal}} = \kappa \boldsymbol{e} \cdot V_{\mu} (\bar{f}_{\mathrm{SM}} \gamma^{\mu} f_{\mathrm{SM}}).$$

Exothermic scattering on electrons: $\chi_2 + e \rightarrow \chi_1 + e$.

It leads to large energy deposit (assuming negligible DM velocity):

$$E_{
m recoil}\sim\Delta m imesrac{\mu_{\chi e}}{m_e}$$

DM mass \sim MeV, $\Delta m/m \sim 10^{-2} \Rightarrow E_{
m recoil} \sim 10$ keV (although $mv_0^2 \sim$ eV).

Other relevant searches for V-portal:

• X-ray observations:

current bound (from diffused X-ray observations) is relatively weaker.

- Dark photon absorption in SM targets;
- Known constraints from astrophysics (stars and supernovae, ...).

Summary

• Split light DM model

Two nearly-degenerate DM components.

• Interesting phenomena

Alleviate astrophysical bounds.

Detection of sub-MeV DM in direct searches.

Summary

• Split light DM model

Two nearly-degenerate DM components.

Interesting phenomena

Alleviate astrophysical bounds.

Detection of sub-MeV DM in direct searches.

• Remaining issues:

Fine-tuned to have $R_0 \sim \mathcal{O}(0.1 - 0.01)$ given a decoupled sector.

(extensions, e.g., $3\chi \rightarrow \chi V$?)

Semi-analytic modeling / N-body simulation needed.

Thanks for Your Attention!

Backups

Relative abundance ratio

A decoupled dark sector with T'/T, where the parameters

 $m, \Delta m, g_V, m_V,$

determine the DM relic density:

```
\Omega_{\rm DM} \propto m_{\rm DM} n_{\rm DM} \simeq m(n_1 + n_2)
```

and the relative abundance ratio

at present: $R_0 \equiv n_2/n_1$.

Relative abundance ratio

A decoupled dark sector with T'/T, where the parameters

 $m, \Delta m, g_V, m_V,$

determine the DM relic density:

```
\Omega_{\rm DM} \propto m_{\rm DM} n_{\rm DM} \simeq m(n_1 + n_2)
```

and the relative abundance ratio

at decoupling of 22 \rightarrow 11: $R_{\rm dec} \propto e^{-\Delta m/T'_{\rm dec}}$.

Parameter choice:

- 1) $m_V = 5m/2$ and $\Delta m/m = 10^{-2}$, 10^{-6} ;
- 2) T'/T fixed by the observed $\Omega_{\rm DM}$.
- 3) scan m, g_V to determine R_{dec} ;

Initially thermalized dark sector.

- as required by strong self-interaction.

Initially thermalized dark sector.

- as required by strong self-interaction.

2 Number-depleting processes decouple at T' < m.

- entropy conserved before decoupling. 1 —

- 4 \rightarrow 2 freeze-out, fixing $\Omega_{\rm DM}.$
- $\chi_1\chi_1\chi_2 \leftrightarrow V\chi_1$ is sub-leading due to heavy V. [J. Cline et al. 2017]

Initially thermalized dark sector.

- as required by strong self-interaction.

2 Number-depleting processes decouple at T' < m.

- entropy conserved before decoupling. 1 —

- 4 \rightarrow 2 freeze-out, fixing $\Omega_{\rm DM}.$
- $\chi_1\chi_1\chi_2 \leftrightarrow V\chi_1$ is sub-leading due to heavy V. [J. Cline et al. 2017]

• Annihilation 22 \rightarrow 11 process decouples at T_{dec} .

- fix the relative abundance ratio $R_{
m dec}$ at that moment.

Initially thermalized dark sector.

- as required by strong self-interaction.

2 Number-depleting processes decouple at T' < m.

- entropy conserved before decoupling. 1 —

- 4 \rightarrow 2 freeze-out, fixing $\Omega_{\rm DM}.$
- $\chi_1\chi_1\chi_2 \leftrightarrow V\chi_1$ is sub-leading due to heavy V. [J. Cline et al. 2017]

• Annihilation 22 \rightarrow 11 process decouples at T_{dec} .

- fix the relative abundance ratio $R_{
m dec}$ at that moment.

OM self-scattering processes stop.

Solving the Boltzmann equations:

$$\frac{dY}{dx} = -\frac{s^3 \langle \sigma v^3 \rangle_{4 \to 2}}{x H} \left(Y^4 - Y^2 Y_{eq}^2 \right), \, \dots$$

where x = m/T, $Y = (n_1 + n_2)/s$, and s the entropy density.

Solving the Boltzmann equations:

$$\frac{dY}{dx} = -\frac{s^3 \langle \sigma v^3 \rangle_{4 \to 2}}{x H} \left(Y^4 - Y^2 Y_{eq}^2 \right), \dots$$

where x = m/T, $Y = (n_1 + n_2)/s$, and s the entropy density.

Decreasing $\Delta m/m \Rightarrow$ larger R_{dec} :

- $\sigma_{12 \rightarrow 12}/m = 1 \text{ cm}^2/\text{g} \text{ (dotted) \& } R_{ ext{dec}}\sigma_{12 \rightarrow 12}/m = 1 \text{ cm}^2/\text{g} \text{ (dashed)}$.
- \cdot $\mathcal{O}(10^{-2})$ $R_{\rm dec}$ is possible for lighter SIDM and smaller $\Delta m/m.$

Assuming the relative abundance $R_0 = 1$ ($\Omega_{\chi_1} = \Omega_{\chi_2}$):

Assuming the relative abundance $R_0 = 1$ ($\Omega_{\chi_1} = \Omega_{\chi_2}$):

Astrophysical bounds

Astrophysical bounds

- \cdot For small mass splitting, 11 \rightarrow 22 scattering dominates for $m \geq$ 30 keV.
 - larger $v_0 \Rightarrow$ larger self-scattering (opposite to case of light mediator).

Current bounds on the portal

One example with $g_V = e$, $\Delta m/m = 10^{-2}$, and $m_V = 2.5 m$:

Current bounds on the portal

One example with $g_V = e$, $\Delta m/m = 10^{-2}$, and $m_V = 2.5 m$:

Xiaoyong Chu