# Higgs lepton flavor violation: UV completions and connection to neutrino masses

Juan Herrero García

Royal Institute of Technology (KTH)

In collaboration with Arcadi Santamaría and Nuria Rius [To appear soon]

#### Higgs Tasting Workshop 2016

Benasque, 19<sup>th</sup> of May 2016

- 1 Introduction
- 2 UV completions from EFT
  - 2.1 The Yukawa operator
  - 2.2 The *Derivative* operators
- 3 Connection to neutrino masses
  - 3.1 One-loop-induced HLFV
  - 3.2 Tree-level-induced HLFV
- 4 Summary and conclusions

## Introduction

Juan Herrero García (KTH)

HLFV and neutrino masses

Benasque, 18/05/2016 3 / 24

• CMS [ATLAS] at 8 TeV observes hint of a signal at  $2.4 [1]\sigma$ :

BR $(H \to \mu \tau) = (0.84^{+0.39}_{-0.37}) \% [(0.53 \pm 0.51) \%].$ 

 $\bullet$  If interpreted as upper bounds, at  $95\,\%$  CL, we have:

 $BR(H \to \mu \tau) < 1.51 (1.43) \cdot 10^{-2} CMS (ATLAS).$ 

- 2015 data:  $BR(H \to \mu \tau) = (-0.76^{+0.81}_{-0.84})\%$ . Doesn't exclude 8 TeV.
- If not confirmed,  $H \rightarrow \mu \tau$  will still be a very sensitive BSM probe.

We want to ask:

- What are the UV completions and their expected HLFV rates?
- 2 Could HLFV be connected to neutrino masses, i.e.,  $\Lambda_{LNV} \sim \Lambda_{LFV}?$ 
  - LFV observed in  $\nu$  oscillations, and is expected in charged leptons.
  - For Dirac  $\nu$  or in seesaws HLFV and CLFV rates are unobservable.

#### NP is needed for HLFV

• SM Higgs couplings are diagonal, so NP required for HLFV:

$$\mathcal{L} = -\overline{e_{\mathrm{Li}}} M_{\mathrm{i}} e_{\mathrm{Ri}} - H \overline{e_{\mathrm{Li}}} y_{\mathrm{ij}} e_{\mathrm{Rj}} + \mathrm{H.c.}$$

giving:

$$BR(H \to \tau\mu) = \frac{m_H}{8\pi \Gamma_H^{\text{total}}} \left( |y_{\tau\mu}|^2 + |y_{\mu\tau}|^2 \right),$$

or for quick estimates, using  ${\rm BR}(H\to\tau\tau)=0.065{:}$ 

$$BR(H \to \tau \mu) \approx 0.065 \, \frac{|y_{\tau \mu}|^2 + |y_{\mu \tau}|^2}{2 \, |y_{\tau \tau}|^2} \, .$$

• To explain the excess we need at  $\sim 1\sigma$ , for  $\Gamma_H^{\rm total} = \Gamma_H^{\rm SM} + \Gamma_H^{\rm new}$ :

$$0.002 \lesssim \sqrt{|y_{\tau\mu}|^2 + |y_{\mu\tau}|^2} \lesssim 0.003.$$

## UV completions from EFT

Juan Herrero García (KTH)

HLFV and neutrino masses

Benasque, 18/05/2016 6 / 24

### The Yukawa and Derivative operators

• SM + EFT [Buchmuller, Grzadkowski, Harnik...]:

$$\mathcal{L}_{\text{leptons}} = \overline{L}i \not\!\!D L + \overline{e_{\text{R}}}i \not\!\!D e_{\text{R}} - (Y_{\text{e}} \overline{L} e_{\text{R}} \Phi + \sum_{a} \frac{C_{a}}{\Lambda^{2}} \mathcal{O}_{a} + \text{H.c.})$$

 $D = 6: \qquad \mathcal{O}_{\mathrm{Y}} = \overline{L} C_{Y} e_{\mathrm{R}} \Phi(\Phi^{\dagger} \Phi), \quad \mathcal{O}_{\mathrm{D}\,\mathrm{i}} = (\overline{e_{\mathrm{R}}} \Phi^{\dagger}) C_{D\,\mathrm{i}} i \not\!\!\!D(e_{\mathrm{R}} \Phi).$ 

•  $\mathcal{O}_{D\,i}$  related by EOM to  $\mathcal{O}_{Y}+$  plus other non-HLFV operators.

• After SSB,  $\langle \Phi_0 \rangle = (H+v)/\sqrt{2},$  diagonalize  $M_e:$ 

$$(M_{\rm e})_{ii} \equiv {\rm diag}(m_e, m_\mu, m_\tau) = \frac{1}{\sqrt{2}} V_{\rm L}^{\dagger} \Big( Y_{\rm e} + C_Y \frac{v^2}{2\Lambda^2} \Big) V_{\rm R} v.$$

• Yukawas are no longer diagonal  $(V_{\rm L}^{\dagger} C_Y V_{\rm R} \approx C_Y)$ :

$$(y_{\rm e})_{ij} = \frac{m_i}{v} \delta_{ij} + (C_Y)_{ij} \frac{v^2}{\sqrt{2}\Lambda^2}, \qquad \overline{C}_Y \equiv \sqrt{|(C_Y)_{\tau\mu}|^2 + |(C_Y)_{\mu\tau}|^2}$$

### HLFV scales and models

• NP scales necessary to explain the CMS excess as a function of  $\overline{C}_Y$ :



- Clearly preferred at tree level and without chirality suppression.
- Strongest constraint from  $\tau \to \mu \gamma$ :

$$\frac{ev}{16\pi^2\Lambda^2\sqrt{2}}\bar{\mu}\sigma_{\mu\nu}\left(C^{\gamma}_{\mu\tau}P_R + C^{\gamma*}_{\tau\mu}P_L\right)\tau F^{\mu\nu}\,,$$

which leads to

$$\mathrm{BR}(\tau \to \mu \gamma) \approx 0.03 \, (\mathrm{TeV}/\Lambda)^4 \, \overline{C}_\gamma^2 \, < 4.4 \times 10^{-8}$$

$$\overline{C}_{\gamma}/\Lambda^2 \equiv \sqrt{|C_{\mu\tau}^{\gamma}|^2 + |C_{\tau\mu}^{\gamma}|^2}/\Lambda^2 \lesssim 10^{-3} \,\mathrm{TeV}^{-2} \;.$$

For each type of  $\overline{C}_{\gamma}$ , using the lower bound on  $\Lambda$  from  $\tau \to \mu \gamma$ , we can predict an upper bound on  $BR(H \to \tau \mu)$  for different  $\overline{C}_Y$ :



In red excluded models as an explanation (unless cancellations in  $\tau \to \mu \gamma$ ).

### Systematically study all tree level topologies

(see also [del Aguila, de Blas...])

- Many studies with EFT and models: Iltan, Diaz, Pilaftsis, Diaz Cruz, Sher, Blankenburg, Harnik, Dorsner, Crivellin, Goudelis, Arhrib, Nir, Davidson, Aristizabal, Falkowski, Celis, Arganda, Campos, Dery, Arana-Catania, Kearney, Bhattacharyya, Omura, Dorsner, de Lima, Altmannshofer...
- Our approach: we start by systematically listing the HLFV UV models opening EFT and impose constraints from CLFV.



• The topologies follow a hierarchy:

$$\overline{C}_Y \sim \frac{1}{m^2} \Big( \lambda Y : Y : Y^2 : Y^3 \Big).$$

## Opening the Yukawa operator: scalars. Topologies A.



| Top. | Particles | Representations $(SU(2)_L, U(1)_Y)$ | $He_{\alpha}e_{\beta}$ |
|------|-----------|-------------------------------------|------------------------|
| Α    | 1 S       | S = (2, -1/2)                       | $Y\lambda/m_{S_1}^2$   |

• HLFV is given by  $(\tan\beta = v_2/v_1, \alpha$  CP-even mixing angle):

$$BR(H \to \mu\tau) = \frac{m_H}{8\pi\Gamma_H} \left(\frac{c_{\beta-\alpha}}{\sqrt{2}c_\beta}\right)^2 \left(|Y_2^{\tau\mu}|^2 + |Y_2^{\mu\tau}|^2\right).$$

• A: General 2HDM can explain it after considering all constraints. [Davidson, Aristizabal, Dorsner, Iltan, Diaz, Kanemura...].

Juan Herrero García (KTH)

HLFV and neutrino masses

Benasque, 18/05/2016

## Opening the Yukawa operator: scalars. Topology B.



| Тор. | Particles | Representations $(SU(2)_L, U(1)_Y)$               | $He_{\alpha}e_{\beta}$                               |
|------|-----------|---------------------------------------------------|------------------------------------------------------|
| В    | 25        | $(2, -1/2)_S \oplus (1, 0)_S, (3, 0)_S, (3, 1)_S$ | $\frac{Y\mu_{1}\mu_{2}}{m_{S_{1}}^{2}m_{S_{2}}^{2}}$ |

• The vevs  $v_T$  of the scalar triplets  $(3,0)_S$  and  $(3,1)_S$  contribute as:  $\rho_{(3,0)} = 1 + 4v_T^2/v^2 > 1$ ,  $\rho_{(3,1)} = (v^2 + 2v_T^2)/(v^2 + 4v_T^2) < 1$ . • B: Their vevs are  $v_T \sim \mu_2 v^2/(v M_{S_2}^2) \lesssim (5 \text{ GeV})/v$ , so:

$$\mathrm{BR}(H \to \mu \tau) \sim 0.06 \left( Y_{S_1} \frac{\mu_1 v}{M_{S_1}^2} \frac{\mu_2 v^2}{v M_{S_2}^2} \frac{1}{y_\tau} \right)^2 \lesssim 0.6 \frac{Y_{S_1}^2 v^2}{M_{S_1}^2} \,.$$

Juan Herrero García (KTH)

## Opening the Yukawa operator: fermions. Topologies C, D.

- Both scalars and VL fermions (C):

-Only VL fermions (D):



| Top.           | Particles | Representations $(SU(2)_L, U(1)_Y)$                | $He_{\alpha}e_{\beta}$                        |
|----------------|-----------|----------------------------------------------------|-----------------------------------------------|
| $C_1$          | 1 F,1 S   | $(2, -1/2)_F \oplus (1, 0)_S, (3, 0)_S$            | $\frac{Y_L Y_e \mu}{m_F m_S^2}$               |
| $C_2$          | 1 F,1 S   | $(2, -3/2)_F \oplus (3, 1)_S$                      | $\frac{Y_L Y_e \mu}{m_F m_c^2}$               |
| C <sub>3</sub> | 1 F,1 S   | $(1,-1)_F\oplus(1,0)_S$ , $(3,-1)_F\oplus~(3,0)_S$ | $\frac{Y_L Y_e \mu}{m_F m_c^2}$               |
| $C_4$          | 1 F,1 S   | $(3,0)_F\oplus(3,1)_S$                             | $\frac{Y_L^T Y_e \mu}{m_F m_S^2}$             |
| D <sub>1</sub> | 2 F       | $(2, -1/2)_F \oplus (1, 0)_F, (3, 0)_F$            | $\frac{Y_L Y_e Y_F}{m_{F_1} m_{F_2}}$         |
| D <sub>2</sub> | 2 F       | $(2, -1/2)_F \oplus (1, -1)_F, (3, -1)_F$          | $\frac{Y_L Y_e Y_F^2}{m_{F_1} m_{F_2}}$       |
| D <sub>3</sub> | 2 F       | $(2, -3/2)_F \oplus (1, -1)_F, (3, -1)_F$          | $\frac{Y_L Y_e \hat{Y_F}^2}{m_{F_1} m_{F_2}}$ |

Juan Herrero García (KTH)

- Several constraints on them from universality,  $\rho,$  naturality, perturbativity, stability,  $h\to\gamma\gamma...$  etc.
- Strongest limits from CLFV ( $au o \mu\gamma$ ). Different contributions:
  - a) From EFT with SM Higgs (Yukawa op.)  $\propto m_{ au}^2$  [Blankenburg, Harnik].
  - b) From EFT operators NOT giving HLFV (*Derivative* op.).
  - c) With at least one heavy particle (from matching with EFT):
  - c1) Closing the Higgs in the HLFV topologies and attaching a photon.
  - c2) From only heavy particles running in the loop.

## Upper bounds on HLFV models from CLFV.

We can classify the contributions in two types:

Robust: a), b), c1).
 Can NOT decouple HLFV from CLFV.
 For instance, in 2HDM diagrams with light and heavy Higgs (c1).

Natural: c2).

Can decouple HLFV from CLFV.

For instance, heavy Higgs cont. in 2HDM would vanish if  $Y_{\tau\tau} = 0$ .

We get for the different topologies:

• Topologies A and B:

 $BR(H \to \mu \tau) \lesssim 0.1 (0.2)$ , for robust (natural).

• Topologies C and D:

 $\mathrm{BR}(H\to\mu\tau)\lesssim 2\cdot 10^{-6}\left(2\cdot 10^{-2}\right),\qquad\text{for \ \textit{robust (natural)}}.$ 

### The *Derivative operator*. Topologies E with VLL, $\propto m_{\tau}$ .



•  $\mathsf{Z}:\kappa_{\tau\mu}e/(2c_w s_w), \mathsf{W}:\kappa_{\tau\mu}e/(2\sqrt{2}s_w), \mathsf{H}:y_{\tau\mu} \sim y_{\tau}\kappa_{\tau\mu} \ (\kappa_{\tau\mu} \sim Y_{\tau F}Y_{\mu F}v^2/m_F^2).$ • Tree-level ZLFV  $\mathrm{BR}(\tau \to 3\mu) < 2.1 \cdot 10^{-8} \longrightarrow |\kappa_{\tau\mu}| \lesssim \mathcal{O}(10^{-3}):$  $\mathrm{BR}(h \to \mu\tau) \sim 1200|y_{\tau\mu}|^2 \lesssim 10^{-7}.$ 

• As for the Yukawa op., also  $au o \mu \gamma$ : contributions a, b and c1.

| Operator                                                                               | Topology | Particles     | $Z \nu_{\alpha} \nu_{\beta}$ | $Z e_{\alpha} e_{\beta}$ | $W e_{lpha}  u_{eta}$ | $H e_{\alpha} e_{\beta}$ | ; |
|----------------------------------------------------------------------------------------|----------|---------------|------------------------------|--------------------------|-----------------------|--------------------------|---|
| $(\overline{e_{\mathrm{R}}}\Phi^{\dagger})iD\!\!\!/(e_{\mathrm{R}}\Phi)$               | $E_1$    | $(2, -1/2)_F$ |                              | -1                       |                       | 1                        |   |
| $(\overline{e_{\mathrm{R}}}\Phi^{T})iD(e_{\mathrm{R}}\Phi^{*})$                        | $E_2$    | $(2, -3/2)_F$ |                              | +1                       |                       | 1                        |   |
| $(\overline{L}\tilde{\Phi})iD\!\!\!/(\tilde{\Phi}^{\dagger}L)$                         | $E_{3a}$ | $(1,0)_F$     | -1                           |                          | -1                    |                          |   |
| $(\overline{L}\vec{\sigma}\tilde{\Phi})iD\!\!\!/(\tilde{\Phi}^{\dagger}\vec{\sigma}L)$ | $E_{3b}$ | $(3,0)_F$     | -1                           | -2                       | +1                    | 2                        |   |
| $(\overline{L}\Phi)iD\!\!\!/(\Phi^{\dagger}L)$                                         | $E_{4a}$ | $(1, -1)_F$   |                              | +1                       | -1                    | 1                        |   |
| $(\overline{L}\vec{\sigma}\Phi)iD\!\!\!/(\Phi^{\dagger}\vec{\sigma}L)$                 | $E_{4b}$ | $(3, -1)_F$   | +2                           | < _+1<∂                  | , , <u></u> ±1 , ≣    | ▶ 2                      | 5 |

Juan Herrero García (KTH)

## Connection to neutrino masses

Juan Herrero García (KTH)

HLFV and neutrino masses

Benasque, 18/05/2016 17 / 24

## Neutrino mass models typically give HLFV at one loop



| Тор.      | Part.        | Representations                     | Neutrino mass models      |
|-----------|--------------|-------------------------------------|---------------------------|
| LR        | S, F         | $(1,0)_F, (3,0)_F$                  | Dirac, SSI/III (ISS)      |
| RR        | S            | $(1,2)_S$                           | ZB (doubly-charged)       |
| LL        | S            | $(1,1)_S, (3,1)_S$                  | ZB (singly-charged), SSII |
| $LL(Z_2)$ | $S \oplus F$ | $(1,1/2)_S \oplus (1,0)_F, (3,0)_F$ | Scotogenic Model          |

### Neutrino mass models giving HLFV at one loop

• We estimate that all neutrino mass models give:

$$\mathrm{BR}(H \to \mu \tau) \sim 0.06 \, \frac{\lambda_{iH}^2}{(4\pi)^4} \Big(\frac{v}{\mathrm{TeV}}\Big)^4 \, \Big(\frac{Y}{M_i/\mathrm{TeV}}\Big)^4.$$

•  $\tau \to \mu \gamma$  typically give the constraint:

$$\left(\frac{Y}{M_i/{\rm TeV}}\right)^4 \lesssim \mathcal{O}(0.01-1) \quad \longrightarrow \quad {\rm BR}(H \to \mu \tau) \lesssim 10^{-8}.$$

Is  ${\rm BR}(H \to \mu \tau) \sim 0.01$  possible, overcoming the loop  $\sim 1/(4\pi)^4$ ?

- Evade cLFV? No, some of the new F and S in the loop are charged. One expects cLFV at the same level as HLFV [Dorsner].
- Large Yukawas with special textures:  $\lesssim 10^{-5}$  [ISS,  $\mbox{Arganda}].$
- But: large  $Y,\lambda$  lead to instabilities/non-perturbative and  $H\to\gamma\gamma.$

#### Neutrino masses for HLFV at tree level: The Zee Model.

[Zee, Cheng, Babu, Wolfenstein, Petcov, Smirnov, Frampton, Kanemura, Aristizabal, Koide, He..]

• The Zee model (type III version):

$$\mathcal{L}_Y = -\overline{L} \left( Y_1^{\dagger} \Phi + Y_2^{\dagger} \Phi_2 \right) e_{\mathrm{R}} - \overline{\tilde{L}} f L h^+ + \mathrm{H.c.}$$



$$\mathrm{BR}(H \to \mu \tau) = \frac{m_H}{8\pi\Gamma_H} \left(\frac{s_{\beta-\alpha}}{\sqrt{2} s_\beta}\right)^2 \left(|Y_2^{\tau\mu}|^2 + |Y_2^{\mu\tau}|^2\right).$$

- Mixing angles imply  $Y_2^{e\tau}$ ,  $Y_2^{\mu\tau} \neq 0$  so  $BR_{H \to \mu\tau} \times BR_{H \to e\tau} > \#$ .
- Upper bound from  $\mu \rightarrow e \gamma$  plus  $\mu e$  conversion [Dorsner]:

$$BR_{H\to\mu\tau} \times BR_{H\to e\tau} \lesssim 10^{-8}.$$

- For  $BR_{H\to\mu\tau} \sim 0.01$  we get  $BR_{H\to\tau e} \lesssim 10^{-6}$ .
- Compatibility under study doing a MCMC [In preparation].

 $\bullet$  LR models based on  ${\rm SU}(2)_L \times {\rm SU}(2)_R \times {\rm U}(1)_{B-L}$  and restore parity:

$$Q = T_{3L} + T_{3R} + (B - L)/2$$
.

• B-L=2 triplets,  $\Delta_R(1,3,2)$  and  $\Delta_L(3,1,2).$  Bi-doublet  $(2,2,0)\colon$ 

$$\Sigma = \begin{pmatrix} \Phi_1^0 & \Phi_2^+ \\ \Phi_1^- & \Phi_2^0 \end{pmatrix}, \qquad \tilde{\Sigma} = \tau_2 \, \Sigma^* \, \tau_2 = \begin{pmatrix} \Phi_2^{0*} & -\Phi_1^+ \\ -\Phi_2^- & \Phi_1^{0*} \end{pmatrix}.$$

• The Yukawa Lagrangian is a Type III 2HDM at low energies:

$$\mathcal{L}_Y \subset \overline{L}_L(Y_1\Sigma + Y_2\tilde{\Sigma})L_{\mathbf{R}} \to \overline{e_L} \left(Y_1(v_1 + H_1^0) + Y_2(v_2 + H_2^0)\right)e_{\mathbf{R}}.$$

- Need  $v_{\rm L} \ll v_1 \sim v_2 \ll v_{\rm R}$ . FCNC imply  $m_{H_2^0} \gtrsim 15$  TeV.
- Extended models with  $m_{W_R} \sim 2$  TeV for di-boson anomaly (and no excess in SS leptons) may explain both [Mohapatra, Liu, Dobrescu, Gluza...].

# Summary and conclusions

Juan Herrero García (KTH)

HLFV and neutrino masses

Benasque, 18/05/2016 23 / 24

3

## Summary and conclusions

- HLFV would imply BSM physics, maybe related to neutrino masses.
- All tree level topologies from Yukawa and Derivative operators.
- Contributions to  $\tau \rightarrow \mu \gamma$  from both EFT and UV. Robust/natural (HLFV doesn't/does decouple from CLFV) upper limits on  $H \rightarrow \tau \mu$ .
- All VL models are excluded as an explanation. Some generate the *Derivative operator* giving tree-level ZLFV.
- Type III 2HDM works due to CLFV suppression wrt VL (cont. with only heavy Higgs could be made zero if  $Y_{\tau\tau} \rightarrow 0$ ).
- All models with HLFV at 1 loop (typical neutrino mass models) yield too low BR, typically  $\lesssim 10^{-9}$ , and in the best case  $\lesssim 10^{-5}$ .
- We find that the best-motivated scenarios (also neutrino masses) are:
  - The Zee model [detailed study in preparation].
  - 2 LR symmetric models, which may also explain di-boson anomaly.

## **Back-up slides**

Juan Herrero García (KTH)

HLFV and neutrino masses

Benasque, 18/05/2016 24 / 24

э

## Summary of EFT [left, CMS] and models [right, Dorsner]

• 2HDM work because  $\tau \rightarrow \mu \gamma$  is suppressed wrt VL:  $BR_{\tau \to \mu\gamma}^{2HDM} \sim 10^{-3} BR_{\tau \to \mu\gamma}^{VL}$ .



Juan Herrero García (KTH)

Benasque, 18/05/2016

• In general cLFV like  $\tau \to \mu \gamma$  is given by  $(\vec{\tau} = (\tau_1, \tau_2, \tau_3))$ :

$$\overline{L} \Phi c_B \sigma^{\mu\nu} e_{\mathrm{R}} B_{\mu\nu} + \overline{L} \Phi c_W \sigma^{\mu\nu} e_{\mathrm{R}} \left( \vec{\tau} \cdot \vec{W}_{\mu\nu} \right).$$

• Four lepton operators generate  $au o 3\mu$ , for instance, via:

 $c_{4F} \,\overline{e_{\mathrm{R}}} \,\overline{e_{\mathrm{R}}} \,e_{\mathrm{R}} \,e_{\mathrm{R}}$ .

• Other ones give rise to FCNC and FCCC:

$$(\overline{L} c_{D1} \gamma_{\mu} L + \overline{e_R} c_{D2} \gamma_{\mu} e_R) (\Phi^{\dagger} i \overset{\leftrightarrow}{D^{\mu}} \Phi) + (\overline{L} c_{D3} \gamma_{\mu} \vec{\tau} L) (\Phi^{\dagger} \vec{\tau} i \overset{\leftrightarrow}{D^{\mu}} \Phi),$$

where  $\Phi^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} \Phi \equiv \Phi^{\dagger} i D^{\mu} \Phi - (i D^{\mu} \Phi^{\dagger}) \Phi$ .

- These last ones do NOT generate HLFV.
- HLFV is given by the Yukawa and the Derivative operators.

### The Derivative operator

• Using EOM, the Yukawa operator becomes  $C_Y = C' Y_e + Y_e C''$ :

$$\frac{1}{\Lambda^2} (\overline{L} C' i \gamma_\mu D^\mu L) (\Phi^{\dagger} \Phi) + \text{H.c.}, \qquad \frac{1}{\Lambda^2} (\overline{e_{\mathrm{R}}} C''^{\dagger} i \gamma_\mu D^\mu e_{\mathrm{R}}) (\Phi^{\dagger} \Phi) + \text{H.c.},$$

• These change kinetic terms, so we need to redefine wave functions:

$$L'_{k} = L_{i} \left( 1 + 2 C'_{ki} \frac{\Phi^{\dagger} \Phi}{\Lambda^{2}} \right)^{1/2} = L_{i} \left( 1 + C'_{ki} \frac{\Phi^{\dagger} \Phi}{\Lambda^{2}} \right) + \mathcal{O} \left( \frac{\Phi^{\dagger} \Phi}{\Lambda^{2}} \right)^{2}.$$

• The SM Yukawa gives the Yukawa op., and kinetic terms become:

$$\frac{1}{\Lambda^2} (\overline{L} \, C' \, \gamma_\mu L) \, (\Phi^\dagger i \overset{\leftrightarrow}{D^\mu} \Phi) \,,$$

which does not give HLFV, but sizable FCNC and FCCC (VL models).

•  $\Phi$  SM Higgs,  $L\left(e_{\mathrm{R}}\right)$  lepton doublet (singlet),  $Y_{\mathrm{e}}$  Yukawa matrix:

$$\mathcal{L}_{\rm SM} = \overline{L}i \not\!\!\!D L + \overline{e_{\rm R}}i \not\!\!\!D e_{\rm R} + Y_{\rm e} \overline{L} e_{\rm R} \Phi + \text{H.c.}$$

• At D = 5 only the Weinberg operator, which gives neutrino masses:

$$\mathcal{L}_5 = \frac{1}{2} \frac{c_{\alpha\beta}}{\Lambda} (\overline{\ell_\alpha} \tilde{\Phi}) \left( \Phi^{\dagger} \tilde{\ell}_{\beta} \right) + \text{H.c.} \qquad \longrightarrow m_{\nu} = c \, \frac{v^2}{\Lambda} \,.$$

- At D = 6 many operators, but only a few are relevant for HLFV.
- The following renormalize H and v and can be easily absorbed:

$$c_H \partial^\mu (\Phi^\dagger \Phi) \partial_\mu (\Phi^\dagger \Phi) + c_\lambda (\Phi^\dagger \Phi)^3$$

### Naturality: OK with large $H \rightarrow \tau \mu$ . Figure from Dorsner.

- $|\det M| = |M_{\mu\mu}M_{\tau\tau} M_{\tau\mu}M_{\mu\tau}| = m_{\mu}m_{\tau}.$
- To avoid avoid fine-tuning we can require  $|M_{\tau\mu}M_{\mu\tau}| < m_{\mu}m_{\tau}$ .
- We get for  $y_{\tau\mu} = y_{\mu\tau}$ :

$$\overline{y} \equiv \sqrt{|y_{\mu au}|^2 + |y_{ au\mu}|^2} \lesssim 0.005$$
 .

• This is compatible with the CMS preferred range.



#### • Universality.

$$\begin{split} \mu_{\ell} &\equiv \frac{\mathrm{BR}_{\ell}}{\mathrm{BR}_{\ell}^{SM}} = \frac{(g_{L}^{SM} + \delta g_{\ell L}^{NP})^2 + (g_{R}^{SM} + \delta g_{\ell R}^{NP})^2}{(g_{L}^{SM})^2 + (g_{R}^{SM})^2} \\ \approx & 1 + 2 \, \frac{g_{L}^{SM} \delta g_{\ell L}^{NP} + g_{R}^{SM} \delta g_{\ell R}^{NP}}{(g_{L}^{SM})^2 + (g_{R}^{SM})^2} \,. \end{split}$$

From  $\mu_{\tau} = 1.0036 \pm 0.0025$  (similarly for  $\mu\mu$ , ee):

$$\kappa_{\ell\ell} < \kappa_{\tau\tau} < 0.005$$
 at  $95\,\%\,\text{C.L.}$ 

### Opening the Derivative operator with VL: example

• Example: vector-like lepton  $E = (1, -1)_F$  of bare mass  $M_E$ :

$$\mathcal{L} = i\overline{L} \not\!\!\!D L + i\overline{e_{\mathrm{R}}} \not\!\!\!D e_{\mathrm{R}} + \overline{E} \left( i\not\!\!\!D - M_{\mathrm{E}} \right) E + \left( \overline{L}Y_e e_{\mathrm{R}} \Phi + \overline{L}Y_E E_{\mathrm{R}} \Phi + \mathrm{H.c.} \right).$$

• Take  $M_{\rm E} > v$ , so we can integrate-out the E:

$$\mathcal{L}_{\rm EFT} = -(\overline{L} \Phi) \frac{Y_E Y_E^{\dagger}}{i \not\!\!D - M_{\rm E}} (\Phi^{\dagger} L) = (\overline{L} \Phi) \frac{Y_E Y_E^{\dagger}}{M_{\rm E}^2} i \not\!\!D (\Phi^{\dagger} L) + \mathcal{O} \left(\frac{1}{M_{\rm E}^4}\right)$$

• Using  $C_E/\Lambda^2 = 1/2Y_E M_E^{-2} Y_E^{\dagger}$  and  $\Phi \Phi^{\dagger} = \frac{1}{2} (\Phi^{\dagger} \Phi) + \frac{1}{2} \vec{\tau} (\Phi^{\dagger} \vec{\tau} \Phi)$ :

$$\mathcal{L}_{\rm EFT}^{D \leq 6} = \frac{i}{2\Lambda^2} \Big[ (\overline{L} C_E \overleftrightarrow{D} L) (\Phi^{\dagger} \Phi) + (\overline{L} C_E \vec{\tau} \overleftrightarrow{D} L) (\Phi^{\dagger} \vec{\tau} \Phi) - (\overline{L} C_E \gamma^{\mu} L) (\Phi^{\dagger} \overrightarrow{D}_{\mu} \Phi) - (\overline{L} C_E \gamma^{\mu} \vec{\tau} L) (\Phi^{\dagger} \vec{\tau} \overleftrightarrow{D}_{\mu} \Phi) \Big].$$

Both HLFV (1st line) and FCNC (2nd line) at same level!

## General VL models explicitly: "matching" with EFT

• Z FCNC, where  $\ell$  run only on doublets and a, b on all charged leptons:

$$\mathcal{L}_{Z} = \frac{g}{2c_{W}} \left( \bar{E}_{L} \gamma^{\mu} X_{L} E_{L} + \bar{E}_{R} \gamma^{\mu} X_{R} E_{R} + 2s_{W}^{2} J_{EM}^{\mu} \right) Z^{\mu},$$
$$(X_{L})_{ba} = \left( V_{L}^{\dagger} \right)_{b\ell} (V_{L})_{\ell a} , (X_{R})_{ba} = \left( V_{R}^{\dagger} \right)_{b\ell} (V_{R})_{\ell a} ,$$
FCNC:

$$-\mathcal{L}_h \to \bar{E}_L V_L^{\dagger} Y_E V_R E_R h + \text{h.c.}$$

• The HLFV Yukawa coupling is (similarly for  $y_{\tau\mu}$ ):

$$\begin{split} vy_{\mu\tau} &= (vV_L^{\dagger}Y_EV_R)_{\mu\tau} = (X_LD_E + D_EX_R - 2X_LD_EX_R)_{\mu\tau} \\ &= (X_L)_{\mu\tau}m_{\tau} + m_{\mu}(X_R)_{\mu\tau} - 2(X_LD_EX_R)_{\mu\tau} \\ &\approx \frac{Y_{\mu F_1}v}{m_{F_1}}\frac{(Y^{\dagger})_{F_1\tau}v}{m_{F_1}}m_{\tau} + \frac{Y_{\mu F_2}v}{m_{F_2}}\frac{(Y^{\dagger})_{F_2\tau}v}{m_{F_2}}m_{\mu} - 2\frac{Y_{\mu F_1}v}{m_{F_1}}Y_{12}v\frac{(Y^{\dagger})_{F_2\tau}v}{m_{F_2}}. \\ &\text{Derivative op.} + Yukawa op., \text{ top. D: dominates unless } Y_{12}v < m_{\tau}. \\ &= 1 + \sqrt{C} + \sqrt{C}$$

• H

۲

## $\tau \to \mu \gamma$ in VL models

- 1-loop VL Higgs contributions to  $\tau \rightarrow \mu \gamma$  go as (Z subdominant):
  - $((X_L D_E + D_E X_R 2X_L D_E X_R)\tilde{D}_E^{-1}(X_L D_E + D_E X_R 2X_L D_E X_R))_{\mu\tau}$

$$\approx \left(\frac{Y_{\mu S}Y_{SD}Y_{D\tau}v^{3}}{M_{S,D}^{2}}\right) \approx (X_{L}D_{E}X_{R})_{\mu\tau} \propto vy_{\mu\tau}.$$

• In VL enhanced  $\tau \rightarrow \mu \gamma$  rate wrt to 2HDM:

$$A_R^{\rm VL} \sim \frac{y_{\mu\tau}}{(4\pi)^2 v m_\tau} \qquad {\rm vs} \qquad A_R^{\rm 2HDM} \sim \frac{y_{\mu\tau} \, m_\tau}{(4\pi)^2 v m_H^2} \label{eq:AR}$$

- Note: 2HDM 2 loops (Barr-Zee) dominate [Davidson, Harnik, Aristizabal...].
- $\tau \rightarrow \mu \gamma$  excludes VL in composite scenarios [Falkowski].

## Opening the Weinberg operator at tree level: seesaws

• Rewriting the Weinberg operator:

$$\left(\overline{\ell_{\alpha}}\tilde{\phi}\right)\,\left(\phi^{\dagger}\tilde{\ell}_{\beta}\right) = -\left(\overline{\ell_{\alpha}}\,\vec{\sigma}\tilde{\phi}\right)\,\left(\phi^{\dagger}\,\vec{\sigma}\tilde{\ell}_{\beta}\right) = \frac{1}{2}\left(\overline{\ell_{\alpha}}\,\vec{\sigma}\,\tilde{\ell}_{\beta}\right)\,\left(\phi^{\dagger}\,\vec{\sigma}\,\tilde{\phi}\right),$$

where  $\alpha$  and  $\beta$  are family indices and  $\vec{\sigma} \equiv (\sigma_1, \sigma_2, \sigma_3)$ .



• 3 different particles can generate Weinberg op. at tree level:

- a Y = 0 heavy fermion singlet (triplet), type I (III) seesaw.
- a Y = 1 heavy scalar triplet, type II seesaw.
- Explains why  $\nu$ 's are light: they couple to high scale fields.
- Drawbacks: typically difficult to test, problem of hierarchies.

### Adding right-handed neutrinos: seesaw type I

$$\mathcal{L}_{\nu_{\mathrm{R}}} = i \,\overline{\nu_{\mathrm{R}}} \gamma^{\mu} \partial_{\mu} \nu_{\mathrm{R}} - \left( \overline{\ell} \, \tilde{\phi} \, Y \, \nu_{\mathrm{R}} + \frac{1}{2} \overline{\nu_{\mathrm{R}}^{\mathrm{c}}} m_{\mathrm{R}} \nu_{\mathrm{R}} + \mathrm{H.c.} \right) \,,$$

where  $m_{\rm R}$  is a  $n \times n$  symmetric matrix. After SSB:

$$\mathcal{L}_{\nu \text{ mass}} = -\frac{1}{2} \begin{pmatrix} \overline{\nu_{\rm L}} & \overline{\nu_{\rm R}^{\rm c}} \end{pmatrix} \begin{pmatrix} 0 & m_{\rm D} \\ m_{\rm D}^{\rm T} & m_{\rm R} \end{pmatrix} \begin{pmatrix} \nu_{\rm L}^{\rm c} \\ \nu_{\rm R} \end{pmatrix} + \text{H.c.} ,$$

where  $m_{\rm D} = Y \frac{v}{\sqrt{2}}$ .



If  $m_{\rm R} \gg m_{\rm D}$ , one gets  $n \ m_{\rm R}$  leptons (mainly singlets) and

$$m_{\nu} \simeq -m_{\rm D} \, m_{\rm R}^{-1} \, m_{\rm D}^{\rm T}.$$

Juan Herrero García (KTH)

HLFV and neutrino masses

• Add to the SM one scalar triplet with hypercharge Y = 1 and LN -2. In the doublet representation of  $SU(2)_{\rm L}$  the triplet is a  $2 \times 2$  matrix:

$$\chi = \begin{pmatrix} \chi^+/\sqrt{2} & \chi^{++} \\ \chi_0 & -\chi^+/\sqrt{2} \end{pmatrix}$$

Gauge invariance allows a Yukawa coupling of the scalar triplet to  $2 \ {\rm lepton}$  doublets,

$$\mathcal{L}_{\chi} = -\left( (Y_{\chi})_{\alpha\beta} \,\overline{\tilde{\ell}}_{\alpha} \chi \ell_{\beta} + \text{H.c.} \right) - V(\phi, \chi) \,,$$

where  $Y_{\chi}$  is a symmetric matrix and  $\tilde{\ell} = i\tau_2 \, \ell^c$ . The scalar potential has the following terms:

$$V(\phi,\chi) = m_{\chi}^{2} \operatorname{Tr}[\chi\chi^{\dagger}] + \left(\mu \,\tilde{\phi}^{\dagger}\chi^{\dagger}\phi + \text{H.c.}\right) + \dots$$

 The μ coupling violates LN and induces a VEV for the triplet via v<sub>φ</sub>, even if m<sub>χ</sub> > 0. In the limit m<sub>χ</sub> ≫ v<sub>φ</sub>:

$$m_{\nu} = 2Y_{\chi}v_{\chi} = 2Y_{\chi}\frac{\mu v_{\phi}^2}{m_{\chi}^2}$$

- $m_{\nu}$  are thus proportional to both  $Y_{\chi}$  and  $\mu$ , since the breaking of LN results from their simultaneous presence.
- If  $m_{\chi}^2$  is positive and large,  $v_{\chi}$  will be small, in agreement with the  $\rho$  parameter,  $v_{\chi} \lesssim 6$  GeV.
- Moreover,  $\mu$  can be naturally small, because in its absence LN is recovered, increasing the symmetry.

### Example: the Zee-Babu model [Cheng and Li, Zee, Babu...]

The D= 9  $\Delta L = 2$  effective operator  $\ell \ell \ell \ell e^c e^c$  generates the Weinberg operator at two loops (and therefore  $m_{\nu}$ ). By NDA:

$$m_{\nu} \sim \frac{c}{(4\pi)^4} \frac{y_e^2 v^2}{\Lambda}$$

One can open this operator with a singly- and a doubly-charged scalar  $h^{\pm}, k^{\pm\pm}$  with  $Y_h = \pm 1$  and  $Y_k = \pm 2$ .



$$\mathcal{L}_Y = \overline{\ell} Y e \phi + \overline{\tilde{\ell}} f \ell h^+ + \overline{e^c} g e k^{++} + \mu h^2 k^{++} + \text{H.c.}$$



- f is AS  $\rightarrow \det f = 0 \rightarrow \det \mathcal{M}_{\nu} = 0$ , so one  $\nu$  is massless.
- We can estimate the amplitude of  $H \to \mu \tau$  to be:

$$A_{\rm ZB} \sim \frac{m_{\tau} v}{(4\pi)^2} \left( \frac{\lambda_{hH}}{m_h^2} \left( f_{e\mu}^* f_{e\tau} \right) + \frac{\lambda_{kH}}{m_k^2} \left( g_{e\mu}^* g_{e\tau} + g_{\mu\mu}^* g_{\mu\tau} + g_{\mu\tau}^* g_{\tau\tau} \right) \right),$$

where  $\lambda_{hH}|h|^2H^{\dagger}H + \lambda_{kH}|k|^2H^{\dagger}H + h.c.$ .

### Strongest onstraints: cLFV and universality





• 
$$\frac{\mathrm{BR}(\tau \to \mu \gamma) < 4.4 \times 10^{-8}}{\frac{|f_{e\tau}^* f_{\mu\tau}|^2}{(m_h/\mathrm{TeV})^4} + \frac{16|g_{ee}^* g_{e\mu} + g_{e\mu}^* g_{\mu\mu} + g_{e\tau}^* g_{\mu\tau}|^2}{(m_k/\mathrm{TeV})^4} < 0.7$$

• BR $(\tau^- \to \mu^+ \mu^- \mu^-) < 2.1 \times 10^{-8}$  $|g_{\mu\tau}g^*_{\mu\mu}| < 0.008 \left(\frac{m_k}{\text{TeV}}\right)^2$ 

## Universality and LFV constraints



• 
$$|V_{ud}^{exp}|^2 + |V_{us}^{exp}|^2 + |V_{ub}^{exp}|^2 = 0.9999 \pm 0.0006$$
  
 $\approx 1 - \frac{\sqrt{2}}{G_F m_h^2} |f_{e\mu}|^2 |\longrightarrow |f_{e\mu}|^2 < 0.007 \left(\frac{m_h}{\text{TeV}}\right)^2$ 

• 
$$\frac{\mathrm{BR}(\mu \to e\gamma) < 5.7 \times 10^{-13}}{\frac{|f_{e\tau}^* f_{\mu\tau}|^2}{(m_h/\mathrm{TeV})^4} + \frac{16|g_{ee}^* g_{e\mu} + g_{e\mu}^* g_{\mu\mu} + g_{e\tau}^* g_{\mu\tau}|^2}{(m_k/\mathrm{TeV})^4} < 1.6 \cdot 10^{-6}$$

• BR(
$$\mu^- \to e^+ e^- e^-$$
) < 1.0 × 10<sup>-12</sup>  
 $\to |g_{e\mu}g^*_{ee}| < 2.3 \cdot 10^{-5} \left(\frac{m_k}{\text{TeV}}\right)^2$