Rare B decay theory

Sebastian Jäger

US University
 of Sussex

Higgs Tasting Workshop
Benasque, 19 May 2016

Contents

1. Rare exclusive B decays: generalities (generalised) form factors an factorisation
2. Bs->mu mu: the gold-plated mode
3. $B->K(*)$ I : selected topics

(You know the) motivation

- After the Higgs discovery, the naturalness problem is a reality. But even natural new physics may lie beyond the LHC energy reach. ATLAS \& CMS may point to that.
- This puts precision Higgs and flavour at the centre of the quest for physics beyond the Standard Model
- Natural BSM models tend to have a flavour problem eg SUSY

flavour violation
- Unprecedented statistics \& interesting results from LHCb, with Belle2 rapidly approaching

Semileptonic decays

hadronic system

hadronic angles \& energies equivalently:
angular momentum L' helicity λ^{\prime}
(+ more if >2 hadrons)
one hadronic/leptonic relative angle Φ if >1 hadron
dilepton mass q^{2}
hadronic mass k^{2}
B has spin zero $=>\lambda=\lambda^{\prime}$
Observing Φ requires interference $A\left(\lambda_{1}\right) A\left(\lambda_{2}\right)^{*} \exp \left(i\left(\lambda_{1}-\lambda_{2}\right) \Phi\right)$

semileptonic $\Delta \mathrm{B}=\Delta \mathrm{S}=1$ Hamiltonian

in SM mainly
C_{9} : dilepton from vector current ($\mathrm{L}=1$)

$$
Q_{9 V}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{l} \gamma^{\mu} l\right)
$$

C_{10} : dilepton from axial current ($\mathrm{L}=1$ or 0)

$$
Q_{10 A}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{l} \gamma^{\mu} \gamma^{5} l\right)_{A}
$$

virtuality
$\sim \mathrm{Mw}^{2}$

- both can be obtained from Z' exchanges
- or leptoquarks

Descotes-Genon et al; Altmannshofer et ;
Crivellin et al; Gauld et al;
Alonso-Grinstein-Martin Camalich; Hiller-Schmaltz; Allanach et al; Gripajos et al; ..
C_{7} : dilepton produced through photon (virtuality q^{2}, pole at $\mathrm{q}^{2}=0$)

$$
Q_{7 \gamma}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu}
$$

- strongly constrained from inclusive b->s decay

BSM: also parity-transformed operators ($\mathrm{C}_{9}{ }^{\prime}, \mathrm{C}_{10}{ }^{\prime}, \mathrm{C}_{7}{ }^{\prime}$) $\mathrm{C}_{9}, \mathrm{C}_{10}$ can depend on the lepton flavour.
Universal BSM effects in C_{9} mimicked by a range of SM effects

hadronic $\Delta \mathrm{B}=\Delta \mathrm{S}=1$ Hamiltonian

Four-quark operators with net $\Delta B=\Delta S=1$ in SM mainly (from tree-level W exchange):

$$
\begin{aligned}
Q_{1} & =\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{u} \gamma^{\mu} P_{L} u\right) \\
Q_{2} & =\left(\bar{s}^{i} \gamma_{\mu} P_{L} b^{j}\right)\left(\bar{u}^{j} \gamma^{\mu} P_{L} u^{i}\right)
\end{aligned}
$$

to lesser extent also (hadronic) QCD penguin operators
dilepton is produced by conversion of a hadronic intermediate state via the (hadronic) electromagnetic (vector) current

Zero hadrons: $\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$

C \& P forbid creation through vector current!

No hadronic intermediate states, no C_{9}

Factorisation (Wilsonian)

more accurately drawn to scale

weak Hamiltonian

more accurately drawn to scale

Implies "naive" factorisation

Quark current annihilating the meson

$m_{b} \sim 4600 \mathrm{MeV}$

No QCD final-state interactions

parameterised by a decay constant not calculable in perturbation theory
quantum electrodynamics only very well controlled theoretically

Calculating the decay constant

B_{s} (leptonic) decay constant
lattice spacing

numerical first-principles calculation possible with lattice-regularised path integral (lattice QCD)
(expansion in $1 / m_{b}$ needed)

$$
f_{B_{s}}=(224 \pm 5) \mathrm{MeV}
$$

Flavour Lattice Averaging Group 2013
Eur.Phys.J.C74 (2014) 2890

C_{10} and $\mathrm{B}_{\mathrm{s}}->\mathrm{mu} \mathrm{mu}$

SM helicity suppression

- NLO QCD corrections [Buchalla,Buras'93'99; Misiak,Urban'99]
- leading- m_{t} NLO electroweak corrections [Buchalla,Buras'98]
- uncertainty (from higher orders): $\approx 7 \%$

exp uncertainty will reach this during HL run

- NNLO QCD
- NLO EW
[Bobeth,Gorbahn,Hermann,Misiak,Stamou,Steinhauser'13]
missing $\mathcal{O}\left(\alpha_{e m}\right)$
- no enhancement factor (like $\frac{1}{\sin ^{2} \theta_{W}}, \frac{m_{t}^{2}}{M_{W}^{2}}$ or $\ln ^{2} \frac{M_{W}^{2}}{\mu_{b}^{2}}$)
- soft Bremsstrahlung: $B_{s} \rightarrow \mu^{+} \mu^{-}+(n \gamma)(n=0,1,2, \ldots)$
- Can QED corrections ($\alpha_{e m} / \pi \approx 2 \times 10^{-3}$) remove helicity suppression factor ($m_{\mu}^{2} / M_{B_{c}}^{2} \approx 10^{-4}$)?

helicity suppression remains

New prediction

$$
\begin{aligned}
& \overline{\mathcal{B}}_{s \mu}=(3.65 \pm 0.06) R_{t \alpha} R_{s} \times 10^{-9}=3.65 \pm 0.23 \times 10^{-9} \quad \bar{R}_{\alpha l}=\frac{\overline{\mathcal{B}}_{q l}}{=}=\frac{1+\mathcal{A}_{\Delta \Gamma}^{\prime \prime} y_{q}}{}\left(\left|S^{2}+\right| P\right. \\
& Q-\left(f_{B_{s}}[\mathrm{MeV}]\right)^{2}\left(\left|V_{c b}\right|\right)^{2}\left(\left|V_{t b}^{\star} V_{t s} / V_{c b}\right|\right)^{2} \tau_{H}^{s}[\mathrm{ps}] \text { parametric uncertainties dominate }
\end{aligned}
$$

C_{10} and $\mathrm{B}_{\mathrm{s}}->$ mu mu

SM helicity suppression

- NLO QCD corrections [Buchalla,Buras'93''99; Misiak,Urban'99]
- leading- m_{t} NLO electroweak corrections [Buchalla,Buras'98]
- uncertainty (from higher orders): $\approx 7 \%$

exp uncertainty will reach this during HL run

- NNLO QCD
- NLO EW
[Bobeth,Gorbahn,Hermann,Misiak,Stamou,Steinhauser'13]
missing $\mathcal{O}\left(\alpha_{e m}\right)$
- no enhancement factor (like $\frac{1}{\sin ^{2} \theta_{W}}, \frac{m_{t}^{2}}{M_{W}^{2}}$ or $\ln ^{2} \frac{M_{W}^{2}}{\mu_{b}^{2}}$)
- soft Bremsstrahlung: $B_{s} \rightarrow \mu^{+} \mu^{-}+(n \gamma)(n=0,1,2, \ldots)$
- Can QED corrections ($\alpha_{e m} / \pi \approx 2 \times 10^{-3}$) remove helicity suppression factor $\left(m_{\mu}^{2} / M_{B_{c}}^{2} \approx 10^{-4}\right)$?

New prediction

$$
\overline{\mathcal{B}}_{s \mu}=(3.65 \pm 0.06) R_{t \alpha} R_{s} \times 10^{-9}=3.65 \pm 0.23 \times 10^{-9} \quad \bar{R}_{\alpha l}=\underline{\underline{\mathcal{B}_{q l}}}=\underline{1+\mathcal{A}_{\Delta r}^{\prime \prime} y_{q}}\left(|S|^{2}+\mid P\right.
$$

$B_{s} \rightarrow \mu \mu$: experiment

Some indication of a suppression w.r.t. SM: $\quad \mathrm{C}_{10}<\mathrm{C}_{10} \mathrm{SM}$?
good prospects from LHCb, (increasingly) CMS; ATLAS eventually HL-LHC (completely dominated by experimental error)

Two hadrons: $\mathrm{B} \rightarrow \mathrm{K}^{*}(\mathrm{~K} \pi) \mathrm{I}^{+}{ }^{-}$

Resonant production: hadronic angular momentum L'=1 leptonic angular momentum L=1 (L=0 helicity-suppressed) classify decay amplitudes according to leptonic mechanism and helicity λ

Two hadrons: $\mathrm{B} \rightarrow \mathrm{K}^{*}(\mathrm{~K} \pi) \mathrm{I}^{+}{ }^{-}$

Resonant production: hadronic angular momentum L'=1 leptonic angular momentum L=1 (L=0 helicity-suppressed) classify decay amplitudes according to leptonic mechanism and helicity λ

- axial leptonic current

Two hadrons: $\mathrm{B} \rightarrow \mathrm{K}^{*}(\mathrm{~K} \pi) \mathrm{I}^{+}{ }^{-}$

Resonant production: hadronic angular momentum L'=1 leptonic angular momentum L=1 (L=0 helicity-suppressed) classify decay amplitudes according to leptonic mechanism and helicity λ

- axial leptonic current

$$
H_{A}(\lambda) \propto \tilde{V}_{\lambda}\left(q^{2}\right) C_{10}-V_{-\lambda}\left(q^{2}\right) C_{10}^{\prime}
$$

Two hadrons: $\mathrm{B} \rightarrow \mathrm{K}^{*}(\mathrm{~K} \pi) \mathrm{I}^{+}{ }^{-}$

Resonant production: hadronic angular momentum L'=1 leptonic angular momentum L=1 (L=0 helicity-suppressed) classify decay amplitudes according to leptonic mechanism and helicity λ

- axial leptonic current

$$
\begin{aligned}
& \mathrm{K}^{*} \text { helicity } \\
& H_{A} \bowtie \propto \tilde{V}_{\lambda}\left(q^{2}\right) C_{10}-V_{-\lambda}\left(q^{2}\right) C_{10}^{\prime}
\end{aligned}
$$

Two hadrons: $\left.\mathrm{B} \rightarrow \mathrm{K}^{*}(\mathrm{~K} \pi)\right)^{+} \mid-$

Resonant production: hadronic angular momentum L'=1 leptonic angular momentum L=1 (L=0 helicity-suppressed) classify decay amplitudes according to leptonic mechanism and helicity λ

- axial leptonic current

K * helicity
$H_{A} \Theta \propto \tilde{V}_{\lambda}\left(q^{2}\right) C_{10}-V_{-\lambda}\left(q^{2}\right) C_{10}^{\prime}$
one form factor (nonperturbative) per helicity amplitudes factorize naively
[one more amplitude if not neglecting lepton mass]

Two hadrons: $\left.\mathrm{B} \rightarrow \mathrm{K}^{*}(\mathrm{~K} \pi)\right)^{+} \mid-$

Resonant production: hadronic angular momentum L'=1 leptonic angular momentum L=1 (L=0 helicity-suppressed) classify decay amplitudes according to leptonic mechanism and helicity λ

- axial leptonic current

one form factor (nonperturbative) per helicity amplitudes factorize naively
[one more amplitude if not neglecting lepton mass]
- vector lepton current (in SM: (mainly) photon)

$H_{V}(\lambda) \propto \tilde{V}_{\lambda}\left(q^{2}\right) C_{9}-V_{-\lambda}\left(q^{2}\right) C_{9}^{\prime}+\frac{2 m_{b} m_{B}}{q^{2}}\left(\tilde{T}_{\lambda}\left(q^{2}\right) C_{7}-\tilde{T}_{-\lambda}\left(q^{2}\right) C_{7}^{\prime}\right)-\frac{16 \pi^{2} m_{B}^{2}}{q^{2}} h_{\lambda}\left(q^{2}\right)$

Two hadrons: $\left.\mathrm{B} \rightarrow \mathrm{K}^{*}(\mathrm{~K} \pi)\right)^{+}+{ }^{-}$

Resonant production: hadronic angular momentum L'=1 leptonic angular momentum L=1 (L=0 helicity-suppressed) classify decay amplitudes according to leptonic mechanism and helicity λ

- axial leptonic current

one form factor (nonperturbative) per helicity amplitudes factorize naively
[one more amplitude if not neglecting lepton mass]
- vector lepton current (in SM: (mainly) photon)

$$
H_{V}(\lambda) \propto \tilde{V}_{\lambda}\left(q^{2}\right) C_{9}-V_{-\lambda}\left(q^{2}\right) C_{9}^{\prime}+\underbrace{\frac{2 m_{b} m_{B}}{q^{2}}\left(\tilde{T}_{\lambda}\left(q^{2}\right) C_{7}-\tilde{T}_{-\lambda}\left(q^{2}\right) C_{7}^{\prime}\right)-\frac{16 \pi^{2} m_{B}^{2}}{q^{2}} h_{\lambda}\left(q^{2}\right)}_{\text {photon pole at } \mathrm{q}^{2}=0}
$$

Two hadrons: $\left.\mathrm{B} \rightarrow \mathrm{K}^{*}(\mathrm{~K} \pi)\right)^{+}+{ }^{-}$

Resonant production: hadronic angular momentum L'=1 leptonic angular momentum L=1 (L=0 helicity-suppressed) classify decay amplitudes according to leptonic mechanism and helicity λ

- axial leptonic current

one form factor (nonperturbative) per helicity amplitudes factorize naively
[one more amplitude if not neglecting lepton mass]
- vector lepton current (in SM: (mainly) photon)

$H_{V}(\lambda) \propto \tilde{V}_{\lambda}\left(q^{2}\right) C_{9}-V_{-\lambda}\left(q^{2}\right) C_{9}^{\prime}+\underbrace{\frac{2 m_{b} m_{B}}{q^{2}}}_{\text {photon pole at } \mathrm{q}^{2}=0}\left(\tilde{T}_{\lambda}\left(q^{2}\right) C_{7}-\tilde{T}_{-\lambda}\left(q^{2}\right) C_{7}^{\prime}\right)-\frac{16 \pi^{2} m_{B}^{2}}{q^{2}} h_{\lambda}\left(q^{2}\right)$
intermediate hadronic states do not factorize naively

Two hadrons: $\left.\mathrm{B} \rightarrow \mathrm{K}^{*}(\mathrm{~K} \pi)\right)^{+}+{ }^{-}$

Resonant production: hadronic angular momentum L'=1 leptonic angular momentum L=1 (L=0 helicity-suppressed) classify decay amplitudes according to leptonic mechanism and helicity λ

- axial leptonic current

$$
\begin{aligned}
& \text { K }^{*} \text { helicity } \\
& H_{A} \Theta \propto \tilde{V}_{\lambda}\left(q^{2}\right) C_{10}-V_{-\lambda}\left(q^{2}\right) C_{10}^{\prime}
\end{aligned}
$$

one form factor (nonperturbative) per helicity amplitudes factorize naively
[one more amplitude if not neglecting lepton mass]

- vector lepton current (in SM: (mainly) photon)

two form factors interfere for each helicity
intermediate hadronic states do not factorize naively

B->K*II : dilepton mass spectrum

B->K*II : dilepton mass spectrum

Lepton universality violation

$$
R_{K}=\frac{\int_{q_{\min }^{2}}^{q_{\max }^{2}} \frac{\mathrm{~d} \Gamma\left[B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right]}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}{\int_{q_{\min }^{2}}^{q_{\max }^{2}} \frac{\mathrm{~d} \Gamma\left[B^{+} \rightarrow K^{+} e^{+} e^{-}\right]}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}
$$

All form-factor and non-local hadronic uncertainties cancel (lepton-universal) if lepton masses negligible (as is the case for $1 \mathrm{GeV}^{2}$ lower cutoff)

Hiller, Krueger 2003 $R_{K}{ }^{(t h)} \approx 1$
a large effect! (Would be consistent with reduced $\mathrm{C}_{10}{ }^{(\mu)}$ or $\mathrm{C}_{9}{ }^{(\mu)}$)
Main theory concern is role of soft photon radiation. No published theoretical study.
Informal consensus that effect is at percent level at most.

Further lepton universality tests

SM predicts lepton universality to great accuracy. In particular, apart from lepton mass effects all helicity amplitudes coincide and hence, to our accuracy, the theory error on any LUV ratio or difference is zero. Altmannshofer, Straub; Hiller, Schmaltz; SJ, Martin Camalich

Two particular classes of observables:

$$
\begin{array}{ll}
R_{K_{X}^{*}}=\frac{\mathcal{B}\left(B \rightarrow K_{X}^{*} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K_{X}^{*} e^{+} e^{-}\right)} . & X=L, T \tag{1}\\
R_{i}=\frac{\left\langle\Sigma_{i}^{\mu}\right\rangle}{\left\langle\sum_{i}^{e}\right\rangle} & \Sigma_{i}=\frac{I_{i}+\bar{I}_{i}}{2}
\end{array}
$$

(2) lepton-flavour-dependence of position of zero-crossings

$$
\Delta_{0}^{i} \equiv\left(q_{0}^{2}\right)_{I_{i}}^{(\mu)}-\left(q_{0}^{2}\right)_{I_{i}}^{(e)}
$$

SJ, Martin Camalich 1412.3183

What would a signal look like?

Any observed deviation from one (R_{i}) or zero (Δ_{0}^{i}) would be a clear BSM signal
Different BSM explanations of R_{k} discriminated

Optimised angular observables

=functions of the angular coefficients for which form factors drop out in the heavy quark limit if perturbative QCD corrections neglected.
E.g. neglecting strong phase differences
close to $q^{2}=0$ Krueger,Matias 2005; Egede et al 2008 (photon pole Becirevic, Schneider 2011
dominance) Matias, Mescia, Ramon, Virto 2012

$$
\begin{gathered}
\text { [tiny; take into account in numerics] } \\
P_{1} \equiv \frac{I_{3}+\bar{I}_{3}}{2\left(I_{2 s}+\bar{I}_{2 s}\right)}=\frac{-2 \operatorname{Re}\left(H_{V}^{+} H_{V}^{-*}+H_{A}^{+} H_{A}^{-*}\right)}{\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}} \approx 2 \frac{\operatorname{Re}\left(C_{7} C_{7}^{\prime *}\right)}{\left|C_{7}\right|^{2}+\left|C_{7}^{\prime}\right|^{2}} \approx \begin{array}{l}
\text { Matias, Mescia, Ramon, Virto } 2012 \\
\text { Descotes-Genon et al } 2012
\end{array} \begin{array}{l}
\text { (Melikhov 1998) } \\
\text { Krueger, Matias 2002 } \\
\text { Lunghi, Matias 2006 }
\end{array} \\
\left.P_{3}^{C P} \equiv-\frac{I_{9}-\bar{I}_{9}}{4\left(I_{2 s}+\bar{I}_{2 s}\right)}=-\frac{\operatorname{Im}\left(H_{V}^{+} H_{V}^{-*}+H_{A}^{+} H_{A}^{-*}\right)}{\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}} \approx \frac{\operatorname{Im}\left(C_{7} C_{7}^{\prime *}\right)}{\left|C_{7}\right|^{2}+\left|C_{7}^{\prime}\right|^{2}}\right\} \begin{array}{l}
\text { (in } \begin{array}{l}
\text { Becirevic, Schneider } 2011 \\
\text { Becirevic, Kou, et al } 2012
\end{array} \\
\mathrm{SM})
\end{array}
\end{gathered}
$$

$$
P_{5}^{\prime}=\frac{\operatorname{Re}\left[\left(H_{V}^{-}-H_{V}^{+}\right) H_{A}^{0 *}+\left(H_{A}^{-}-H_{A}^{+}\right) H_{V}^{0 *}\right]}{\sqrt{\left(\left|H_{V}^{0}\right|^{2}+\left|H_{A}^{0}\right|^{2}\right)\left(\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}\right)}}=\frac{C_{10}\left(C_{9, \perp}+C_{9, \|}\right)}{\sqrt{\left(C_{9 \Perp}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}^{2}+C_{10}^{2}\right)}}
$$

where

$$
\begin{aligned}
C_{9, \perp} & =C_{9}^{\mathrm{eff}}\left(q^{2}\right)+\frac{2 m_{b} m_{B}}{q^{2}} C_{7}^{\mathrm{eff}} \\
C_{9, \|} & =C_{9}^{\mathrm{eff}}\left(q^{2}\right)+\frac{2 m_{b} E}{q^{2}} C_{7}^{\mathrm{eff}}
\end{aligned}
$$

in SM, neglecting power corrections and pert. QCD corrections
C_{7} and C_{9} opposite sign
destructive interference enhances vulnerability to anything that violates the large-energy form factor relations (or more generally underestimated errors on form facors
much less of an issue in than to P_{1} or $\mathrm{P}_{3} \mathrm{CP}$ than eg in $\mathrm{P}_{5}{ }^{\prime}$ (and others)

Optimised angular observables

=functions of the angular coefficients for which form factors drop out in the heavy quark limit if perturbative QCD corrections neglected.
E.g. neglecting strong phase differences
[tiny; take into account in numerics]
$P_{1} \equiv \frac{I_{3}+\bar{I}_{3}}{2\left(I_{2 s}+\bar{I}_{2 s}\right)}=\frac{-2 \operatorname{Re}\left(H_{V}^{+} H_{V}^{-*}+H_{A}^{+} H_{A}^{-*}\right)}{\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}} \approx 2 \frac{\operatorname{Re}\left(C_{7} C_{7}^{\prime *}\right)}{\left|C_{7}\right|^{2}+\left|C_{7}^{\prime}\right|^{2}}$
$\left.P_{3}^{C P} \equiv-\frac{I_{9}-\bar{I}_{9}}{4\left(I_{2 s}+\bar{I}_{2 s}\right)}=-\frac{\operatorname{Im}\left(H_{V}^{+} H_{V}^{-*}+H_{A}^{+} H_{A}^{-*}\right)}{\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}} \approx \frac{\operatorname{Im}\left(C_{7} C_{7}^{\prime *}\right)}{\left|C_{7}\right|^{2}+\left|C_{7}^{\prime}\right|^{2}}\right\}$ (in en alias, Mescia, Ramo
Desen)
(Melikhov 1998)
Krueger, Matias 2002
Lunghi, Matias 2006
Becirevic, Schneider 2011
Becirevic, Kou, et al 2012
$P_{5}^{\prime}=\frac{\operatorname{Re}\left[\left(H_{V}^{-}-H_{V}^{+}\right) H_{A}^{0 *}+\left(H_{A}^{-}-H_{A}^{+}\right) H_{V}^{0 *}\right]}{\sqrt{\left(\left|H_{V}^{0}\right|^{2}+\left|H_{A}^{0}\right|^{2}\right)\left(\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\mid H_{A}^{-}\right.}}$
where

$$
\begin{aligned}
C_{9, \perp} & =C_{9}^{\mathrm{eff}}\left(q^{2}\right)+\frac{2 m_{b} m_{B}}{q^{2}} C_{7}^{\mathrm{eff}} \\
C_{9, \|} & =C_{9}^{\mathrm{eff}}\left(q^{2}\right)+\frac{2 m_{b} E}{q^{2}} C_{7}^{\mathrm{eff}}
\end{aligned}
$$

Two approximate null tests of the SM
What are the leading corrections?
C_{7} and C_{9} opposite sign
destructive interference enhances vulnerability to anything that violates the large-energy form factor relations (or more generally underestimated errors on form facors
much less of an issue in than to P_{1} or $\mathrm{P}_{3} \mathrm{CP}$ than eg in $\mathrm{P}_{5}{ }^{\prime}$ (and others)

B->VII vector amplitudes

Only helicity +1 and -1 contribute to P_{1} and $\mathrm{P}_{3}{ }^{\mathrm{CP}} \quad: \sin , \cos (2 \Phi)$ dependence

$H_{V}(\lambda) \propto \tilde{V}_{\lambda}\left(q^{2}\right) C_{9}-V_{-\lambda}\left(q^{2}\right) C_{9}^{\prime}$
no photon pole:
vanishing relative
contribution as $q^{2}->0$

form factor T_{+}doubly suppressed (further $\mathrm{q}^{2} / \mathrm{mB}^{2}$ factor)
SJ, Martin Camalich 2012
nonlocal term known to be singly suppressed ($\Lambda / \mathrm{m}_{\mathrm{b}}$)
could be the dominant uncertainty for null tests
Grinstein et al 2004
Khodjamirian et al 2010
(Ball, Jones, Zwicky 2006)
however, extra suppression $\sim N / \mathrm{m}_{\mathrm{b}}$
SJ, Martin Camalich 2012

Form factor relations

The heavy-quark limit is highly predictive both for form factor ratios and for virtual-charm effects, for instance:

Charles et al 1999
Beneke, Feldmann 2000
Beneke, Feldmann, Seidel 2001-4

$$
\begin{aligned}
\frac{T_{-}\left(q^{2}\right)}{V_{-}\left(q^{2}\right)}= & 1+\frac{\alpha_{s}}{4 \pi} C_{F}\left[\ln \frac{m_{b}^{2}}{\mu^{2}}-L\right]
\end{aligned}+\frac{\alpha_{s}}{4 \pi} C_{F} \frac{1}{2} \frac{\Delta F_{\perp}}{V_{-}} \text {where } L=-\frac{2 E}{m_{B}-2 E} \ln \frac{2 E}{m_{B}}
$$

- Eliminates form factor dependence from some observables (eg P2' and zero of $A_{F B}$) almost completely, up to Λ / m_{b} power corrections

Descotes-Genon, Hofer, Matias, Virto

- pure HQ limit: T.(0)/V_(0) ~ 1.05 > 1 Beneke,Feldmann 2000
- compare to: $T_{-}(0) / V-(0)=0.94+/-0.04 \quad \begin{aligned} & \text { [D Straub, priv comm based on } \\ & \text { Bharucha, Straub, Zwicky } 1503.05534]\end{aligned}$ light-cone sum rule computation with correlated parameter variations. Difference consistent with $N / \mathrm{m}_{\mathrm{b}}$ power correction; remarkable 5\% error

General parameterisation of power corrections

SJ, Martin Camalich 2012

$\mathrm{a}_{\mathrm{F}}, \mathrm{b}_{\mathrm{F}}$ are $\mathrm{O}\left(\Lambda / \mathrm{m}_{\mathrm{b}}\right)$

- varied at $+/-10 \%$ of generic leading-power analogue (+/-0.03 and +/-0.1 respectively) for error bars on previous slides

One can eliminate two a_{F} and b_{F} by choice of two reference ("soft") form factors. However, unambiguous heavy-quark limit for form factor ratios (eg T_/V_): These are invariant under change of form factor scheme, as are any observables

Any calculation (eg LCSR) can be expressed in terms of the general parameterisation - but then one is using dynamical/model input beyond the heavy-quark expansion

Proposal (Descotes-Genon et al 2014) to center ranges for a_{F}, b_{F} around LCSR predictions (but replace the corresponding errors by ad hoc 10\% ranges).

No theoretical justification given for this. Practical effect is to obtain predictions similar to LCSR - this is so by construction, and is not an independent check.

Charm loop estimate

light-cone SR based on Khodjamirian et al 2010 for K* helicity amplitudes SJ, Martin Camalich 2012 outcome: helicity hierarchy remains for the endpoint region
same conclusion for (anyway CKM-suppressed) light-quark LD effects at low q^{2} (estimated via VMD)

Predictions at very low q^{2}

$\operatorname{Bin}\left[\mathrm{GeV}^{2}\right]$	$B r\left[10^{-8}\right]$	P_{1}	P_{2}	$P_{3}^{C P}\left[10^{-4}\right]$
$[0.1,0.98]$	$9.5_{-3.5}^{+5.2}$	$0.024_{-0.055}^{+0.053}$	$-0.16_{-0.04}^{+0.05}$	$0.1_{-0.8}^{+0.7}$

| Electron | 26_{-9}^{+12} | $0.030_{-0.044}^{+0.047}-0.073_{-0.016}^{+0.020}$ | $0.1_{-0.6}^{+0.6}$ |
| :--- | :--- | :--- | :--- | :--- |

$$
[0.0004,1.12+/-0.06]
$$

- Very clean, very insensitive to form factor input
- Boost in BR: nearly 3x more electrons, most of the extra ones in the relevant q^{2} region -> partly offsets lower efficiency in LHCb

	Result	QCDF Fact. p.c.'s Non-fact. p.c.'s		
P_{1}	$0.030_{-0.044}^{+0.047}$	${ }_{-0.003}^{+0.008}$	± 0.012	${ }_{-0.026}^{+0.028}$
$P_{3}^{C P}\left[10^{-4}\right]$	$0.1_{-0.6}^{+0.7}$	± 0.3	± 0.2	± 0.3

Experiment (electrons) $\begin{array}{ll} & A_{\mathrm{T}}^{(2)}=-0.23 \pm 0.23 \pm 0.05 \quad \text { LHCb, 1501.03028, JHEP } 1504 \text { (2015) } 064 \\ & A_{\mathrm{T}}^{\mathrm{Im}}=+0.14 \pm 0.22 \pm 0.05 \\ & A_{\mathrm{T}}^{\mathrm{Re}}=+0.10 \pm 0.18 \pm 0.05\end{array}$

Constraint on dipoles

C_{7} : electromagnetic dipole coupling (strongly constrained by inclusive $\mathrm{B}->\mathrm{X}_{\mathrm{s}}$ gamma)

operators with right-handed strange quarks (constrained by other angular observables)

SJ, Martin Camalich 2012, 2014; various global fits 2014-2015

+ results on $\mathrm{B}->\mathrm{K}^{*} \mathrm{e}^{+} \mathrm{e}^{-}$
JHEP 1504 (2015) 064

operators with scalar or pseudoscalar couplings (gigantic effects in $\mathrm{B}_{\mathrm{s}}->\mathrm{mu}$ mu due to $\mathrm{SU}(2) \mathrm{xU}(1)$ symmetry)

Grinstein, Martin Camalich 2014

Forward-backward asymmetry

$\xrightarrow[\sim]{\sim}$

LHCb Moriond 2015 ($3 \mathrm{fb}^{-1}$) downward shift of $A_{F B}$ relative to LCSR-based prediction
(Bharucha, Straub, Zwicky 2015)
Such a shift is largely equivalent to a rightward shift of the zero crossing.

Zero crossing in LCSR has been significantly lower than heavy-quark limit for many years (as low as $<3 \mathrm{GeV}^{2}$)
blue line: pure heavy-quark limit, no power corrections
light blue: "68\% Gaussian" theory error (including power corrections) pink: full scan over all theory errors

Surprising that pure HQ limit appears $\mathrm{tc}^{-0.5}$ agree reasonably well with data!

"Clean" observables at present precision have noticeable form factor dependence

Angular observable P_{5} '

(Ignore $6 . .8 \mathrm{GeV}$ bin, above perturbative charm threshold and very close to resonances.)
For Gaussian errors [corresponding to what most authors employ], there is a noticeable deviation in a single bin; but also here less drastic than with LCSR-based theory

Power corrections: analytical

Compare

$$
\begin{aligned}
P_{5}^{\prime}=\left.P_{5}^{\prime}\right|_{\infty}(1+ & \frac{a_{V_{-}}-a_{T_{-}}}{\xi_{\perp}} \frac{m_{B}}{|\vec{k}|} \frac{m_{B}^{2}}{q^{2}} C_{7}^{\mathrm{eff}} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \perp}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)} \\
& +\frac{a_{V_{0}}-a_{T_{0}}}{\xi_{\|}} 2 C_{7}^{\mathrm{eff}} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \|}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)} \\
& \left.+8 \pi^{2} \tilde{h}_{-} \frac{m_{B}}{\xi_{\perp}} \frac{m_{B}^{2}}{q^{2}} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{C_{9, \perp}+C_{9, \|}}+\text { further terms }\right)+\mathcal{O}\left(\Lambda^{2} / m_{B}^{2}\right)
\end{aligned}
$$

(truncated after 3 out of 11 independent power-correction terms!) also, dependence on soft form factors reappears at PC level
and

$$
\begin{aligned}
P_{1}= & \frac{1}{C_{9, \perp}^{2}+C_{10}^{2}} \frac{m_{B}}{|\vec{k}|}\left(-\frac{a_{T_{+}}}{\xi_{\perp}} \frac{2 m_{B}^{2}}{q^{2}} C_{7}^{\mathrm{eff}} C_{9, \perp}-\frac{a_{V_{+}}}{\xi_{\perp}}\left(C_{9, \perp} C_{9}^{\mathrm{eff}}+C_{10}^{2}\right)-\frac{b_{T_{+}}}{\xi_{\perp}} 2 C_{7}^{\mathrm{eff}} C_{9, \perp}\right. \\
& \left.-\frac{b_{V_{+}}}{\xi_{\perp}} \frac{q^{2}}{m_{B}^{2}}\left(C_{9, \perp} C_{9}^{\mathrm{eff}}+C_{10}^{2}\right)+16 \pi \frac{h_{+}}{\xi_{\perp}} \frac{m_{B}^{2}}{q^{2}} C_{9, \perp}\right)+\mathcal{O}\left(\Lambda^{2} / m_{B}^{2}\right) .
\end{aligned}
$$

(complete expression)
Further notice that a_{T+} vanishes as $q^{2}->0, h_{+}$helicity suppressed [will show], and the other three terms lacks the photon pole.

Hence P_{5} ' much less clean than P_{1} (especially the latter at very low q^{2})

Power corrections, scheme independence

SJ, Martin Camalich 1412.3183
Example manifestly form-factor-scheme-independent
$P_{5}^{\prime}=\left.P_{5}^{\prime}\right|_{\infty}(1+\frac{\underbrace{\xi_{1}}_{V_{\perp}-a_{T_{-}}} \vec{n}_{B}}{|\vec{k}|} \frac{m_{B}^{2}}{q^{2}} C_{7}^{\mathrm{eff}} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \perp}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)}$
heavy-quark-
limit result

$$
+\frac{a_{V_{0}}-a_{T_{0}}}{\xi_{\|}} 2 C_{7}^{\mathrm{eff}} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \|}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)}
$$

Many independent power-correction parameters appear.
They appear only in form-factor-scheme-independent combinations.
Example: choose either V - as "soft" (reference) form factor, then $\mathrm{av}_{\mathrm{v}}=0$, or can choose $\mathrm{T}_{\text {-, }}$ then $\mathrm{a}_{\mathrm{T}}=0$.
Because V_/T. is fixed in QCD, the difference (av- - $\mathrm{a}_{\mathrm{T}-}$) agrees in both schemes, up to $\mathrm{O}\left(\Lambda^{2} / \mathrm{m}_{\mathrm{b}}{ }^{2}\right)$.

Numerical differences between different schemes are estimators of higher powers (beyond the truncated parameterisation).

Charming penguin?

Bayesian fit based on the formalism of SJ\&Martin Camalich,
Ciuchini et al, 1512.07157 with conservative prior for long-distance charm
"SM" is Bayesian posterior probability
[S_{5} closely related to $\mathrm{P}_{5}{ }^{\prime}$]

technical note: by design this can account for any effect depending on prior; and in particular can mimic the effect of form factor uncertainties (this work employs a LCSR prediction)
claim that interpretation in terms of shift to $\mathrm{C}_{9}\left(\right.$ or $\left.\mathrm{C}_{7}\right)$ is disfavoured
predicted suppression of long-distance contribution to Hv^{+}confirmed by fit

Global fits

Fits of weak Hamiltonian to data on $\mathrm{B}->\mathrm{K}\left(^{*}\right) l l$, Bs->mu mu, B->Xs gamma, B->phi II, B->K*gamma prefer non-SM values.

also: Bobeth et al; Hurth-Mahmoudi; Ciuchini et al; Ghosh et al,...
Most agree that best fit is for $\mathrm{C}_{9} \mathrm{NP} \sim-1 . .-2$ but differ on significance
Some level of degeneracy $\mathrm{C}_{9} / \mathrm{C}_{10}$ (branching fractions - green band); angular observables prefer C_{9}

Summary and outlook

Rare B decays are sensitive to BSM effects - encapsulated, under very weak assumptions, in a dimension-six weak Hamiltonian

Theoretical description generally involves nonprturbative local and nonlocal form factors which cannot at present be computed in a controlled approximation of QCD.

Some observables are not, or only weakly, sensitive to uncontrolled effects: $B R\left(B_{s} \rightarrow \mu \mu\right), R_{K}$ etc , $R_{D(*)}$; null tests $S_{3} /$ $\mathrm{P}_{1}, \mathrm{~A}_{9} / \mathrm{P}_{3} \mathrm{CP}$

Some indications of a BSM suppression of the semileptonic axial operator C_{10}

Eventually lattice QCD will allow to access the local form factors in a controlled manner. Prospects for nonlocal longdistance effects are less clear.

BACKUP

Heavy-quark limit and corrections

(Charles et al)
q^{2} dependence in heavy-quark limit not known

- (model by a power p , and/or a pole model)

$$
\begin{aligned}
\mathrm{V}_{+}^{\infty}(0) & =0 \\
\mathrm{~V}_{-}^{\infty}(0)=\mathrm{T}_{-}^{\infty}(0) & \mathrm{T}_{+}^{\infty}(0)=0
\end{aligned} \begin{aligned}
& \text { from heavy-quark/ } \\
& \text { large energy } \\
& \text { symmetry }
\end{aligned},
$$

hence
(Beneke, Feldmann)
Corrections are calculable in terms of perturbation theory, decay constants, light cone distribution amplitudes
$V_{+}^{\infty}\left(q^{2}\right)=0 \quad T_{+}^{\infty}\left(q^{2}\right)=0$

- "naively factorizing" part of the helicity amplitudes $\mathrm{H}_{\mathrm{v}, \mathrm{A}}{ }^{+}$strongly suppressed as a consequence of chiral SM weak interactions
- We see the suppression is particularly strong near low-q ${ }^{2}$ endpoint
- Form factor relations imply reduced uncertainties in suitable observables

LHC timescales \& context

Experimental prospects (LHCb)

- Some modes are no longer particularly "rare", we have large samples of some decays already in run I.
- Extrapolating to the future:
\(\left.\begin{array}{c|cccc}channel \& 1 \mathrm{fb}^{-1} \& 3 \mathrm{fb}^{-1} \& run II \& upgrade

\hline B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-} \& 883 \& 2,400 \& 10,500 \& 85,000

B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-} \& 25 \& 80 \& 360 \& 2500

B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \& - \& 15 \& 65 \& 520

B^{0} \rightarrow K^{* 0} \gamma \& 5,300 \& 17,000 \& 76,000 \& 500,000

\left.[low q q^{2}\right]

B^{0} \rightarrow K^{* 0} e^{+} e^{-} \& - \& 150 \& 650 \& 5,200\end{array}\right\}\)| challenge to retain |
| :--- |
| trigger efficiency |
| in run II |

scaling naively by luminosity, assuming $\sigma_{b \bar{b}}$ scales linearly with \sqrt{S}

Experimental prospects (LHCb)

- Some modes are no longer particularly "rare", we have large samples of some decays already in run I.
- Extrapolating to the future:

channel	$1 \mathrm{fb}^{-1}$	$3 \mathrm{fb}^{-1}$	run II	upgrade	
$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$	883	2,400	10,500	85,000	
$B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$	25	80	360	2500	
$B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$	-	15	65	520	
$B^{0} \rightarrow K^{* 0} \gamma$	5,300	17,000	76,000	500,000	challenge to retain trigger efficiency
$\left[l o w ~ q^{\text {e }}\right] B^{0} \rightarrow K^{* 0} e^{+} e^{-}$	-	150	650	5,200	in run II

scaling naively by luminosity, assuming $\sigma_{b \bar{b}}$ scales linearly with \sqrt{s}
[Tom Blake, Rare B decay workshop,
Edinburgh, 12/05/15]
Huge improvements in precision
NP mass reach scales like delta ${ }^{1 / 2}$...
... as long as theory accuracy matches experiment

Theory needs

Form factors: very reliant on light-cone sum rules. Need independent corroboration.

- expect significant progress in lattice QCD (conceptual and numerical)
- flavour has been a driving force behind the European, and world wide, lattice programme for many years
- model-independent constraints from heavy quark expansion (Beneke-Feldmann); but limited accuracy so P_{5} ' anomaly significance lost. More data needed.

New observables - to test lepton universality violation, but also to constrain hadronic inputs better from data eg Hambrock/Hiller/Zwicky 1308.4379

Systematic exploitation of LHC-Belle2 complementarity
Better (correct?) models of BSM, if anomalies accumulate

(Ignore $6 . .8 \mathrm{GeV}$ bin, above perturbative charm threshold and very close to resonances.)
For Gaussian errors [corresponding to what most authors employ], there is a noticeable deviation in a single bin; but also here less drastic than with LCSR-based theory

Nonlocal term / charm loop

Nonlocal term / charm loop

$$
H_{V}(\lambda) \propto \tilde{V}_{\lambda}\left(q^{2}\right) C_{9}-V_{-\lambda}\left(q^{2}\right) C_{9}^{\prime}+\frac{2 m_{b} m_{B}}{q^{2}}\left(\tilde{T}_{\lambda}\left(q^{2}\right) C_{7}-\tilde{T}_{-\lambda}\left(q^{2}\right) C_{7}^{\prime}\right)-\frac{16 \pi^{2} m_{B}^{2}}{q^{2}} h_{\lambda}\left(q^{2}\right)
$$

Nonlocal term / charm loop

$$
H_{V}(\lambda) \propto \tilde{V}_{\lambda}\left(q^{2}\right) C_{9}-V_{-\lambda}\left(q^{2}\right) C_{9}^{\prime}+\frac{2 m_{b} m_{B}}{q^{2}}\left(\tilde{T}_{\lambda}\left(q^{2}\right) C_{7}-\tilde{T}_{-\lambda}\left(q^{2}\right) C_{7}^{\prime}\right)-\frac{16 \pi^{2} m_{B}^{2}}{q^{2}} h_{\lambda}\left(q^{2}\right)
$$

Nonlocal term / charm loop

$$
H_{V}(\lambda) \propto \tilde{V}_{\lambda}\left(q^{2}\right) C_{9}-V_{-\lambda}\left(q^{2}\right) C_{9}^{\prime}+\frac{2 m_{b} m_{B}}{q^{2}}\left(\tilde{T}_{\lambda}\left(q^{2}\right) C_{7}-\tilde{T}_{-\lambda}\left(q^{2}\right) C_{7}^{\prime}\right)-\frac{16 \pi^{2} m_{B}^{2}}{q^{2}} h_{\lambda}\left(q^{2}\right)
$$

more properly: $\quad \frac{e^{2}}{q^{2}} L_{V}^{\mu} a_{\mu}^{\mathrm{had}}=-i \frac{e^{2}}{q^{2}} \int d^{4} x e^{-i q \cdot x}\left\langle\ell^{+} \ell^{-}\right| j_{\mu}^{\mathrm{em}, \mathrm{lept}}(x)|0\rangle \int d^{4} y e^{i q \cdot y}\langle M| j^{\mathrm{em}, \mathrm{had}, \mu}(y) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)|\bar{B}\rangle$

$$
h_{\lambda} \equiv \frac{i}{m_{B}^{2}} \epsilon^{\mu *}(\lambda) a_{\mu}^{\mathrm{had}}
$$

Nonlocal term / charm loop

$$
H_{V}(\lambda) \propto \tilde{V}_{\lambda}\left(q^{2}\right) C_{9}-V_{-\lambda}\left(q^{2}\right) C_{9}^{\prime}+\frac{2 m_{b} m_{B}}{q^{2}}\left(\tilde{T}_{\lambda}\left(q^{2}\right) C_{7}-\tilde{T}_{-\lambda}\left(q^{2}\right) C_{7}^{\prime}\right)-\frac{16 \pi^{2} m_{B}^{2}}{q^{2}} h_{\lambda}\left(q^{2}\right)
$$

more properly:

$$
\begin{array}{ll}
\frac{e^{2}}{q^{2}} L_{V}^{\mu} a_{\mu}^{\mathrm{had}}=-i \frac{e^{2}}{q^{2}} \int d^{4} x e^{-i q \cdot x}\left\langle\ell^{+} \ell^{-}\right| j_{\mu}^{\mathrm{em}, \text { lept }}(x)|0\rangle & \int d^{4} y e^{i q \cdot y}\langle M| j^{\mathrm{em}, \text { had }, \mu}(y) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)|\bar{B}\rangle \\
h_{\lambda} \equiv \frac{i}{m_{B}^{2}} \epsilon^{\mu *}(\lambda) a_{\mu}^{\mathrm{had}} & \text { nonlocal, nonperturbative, large } \\
\text { normalisation }\left(\mathrm{V}_{\mathrm{cb}}{ }^{*} \mathrm{~V}_{\mathrm{cs}} \mathrm{C}_{2}\right)
\end{array}
$$

Nonlocal term / charm loop

$$
H_{V}(\lambda) \propto \tilde{V}_{\lambda}\left(q^{2}\right) C_{9}-V_{-\lambda}\left(q^{2}\right) C_{9}^{\prime}+\frac{2 m_{b} m_{B}}{q^{2}}\left(\tilde{T}_{\lambda}\left(q^{2}\right) C_{7}-\tilde{T}_{-\lambda}\left(q^{2}\right) C_{7}^{\prime}\right)-\frac{16 \pi^{2} m_{B}^{2}}{q^{2}} h_{\lambda}\left(q^{2}\right)
$$

+ strong interactions!
more properly:

$$
\begin{array}{ll}
\frac{e^{2}}{q^{2}} L_{V}^{\mu} a_{\mu}^{\mathrm{had}}=-i \frac{e^{2}}{q^{2}} \int d^{4} x e^{-i q \cdot x}\left\langle\ell^{+} \ell^{-}\right| j_{\mu}^{\mathrm{em}, \text { lept }}(x)|0\rangle & \int^{\int d^{4} y e^{i q \cdot y}\langle M| j^{\mathrm{em}, \text { had }, \mu}(y) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)|\bar{B}\rangle} \\
h_{\lambda} \equiv \frac{i}{m_{B}^{2}} \epsilon^{\mu *}(\lambda) a_{\mu}^{\mathrm{had}} & \text { nonlocal, nonperturbative, large } \\
\text { normalisation }\left(\mathrm{V}_{\mathrm{cb}}{ }^{*} \mathrm{~V}_{\mathrm{cs}} \mathrm{C}_{2}\right)
\end{array}
$$

traditional "ad hoc fix": $\begin{aligned} & \mathrm{C}_{9}->\mathrm{C}_{9}+\mathrm{Y}\left(\mathrm{q}^{2}\right)=\mathrm{C}_{9}{ }^{\text {eff }}\left(\mathrm{q}^{2}\right), \quad \text { "taking into account the charm loop" } \mathrm{C}_{7}->\mathrm{C}_{7} \text { eff }\end{aligned}$

Nonlocal term / charm loop

more properly:

$$
\begin{array}{ll}
\frac{e^{2}}{q^{2}} L_{V}^{\mu} a_{\mu}^{\mathrm{had}}=-i \frac{e^{2}}{q^{2}} \int d^{4} x e^{-i q \cdot x}\left\langle\ell^{+} \ell^{-}\right| j_{\mu}^{\mathrm{em}, \text { lept }}(x)|0\rangle & \int^{\int d^{4} y e^{i q \cdot y}\langle M| j^{\mathrm{em}, \text { had }, \mu}(y) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)|\bar{B}\rangle} \\
h_{\lambda} \equiv \frac{i}{m_{B}^{2}} \epsilon^{\mu *}(\lambda) a_{\mu}^{\mathrm{had}} & \text { nonlocal, nonperturbative, large } \\
\text { normalisation }\left(\mathrm{V}_{\mathrm{cb}}{ }^{*} \mathrm{~V}_{\mathrm{cs}} \mathrm{C}_{2}\right)
\end{array}
$$

traditional "ad hoc fix" : $\quad \mathrm{C}_{9}->\mathrm{C}_{9}+\mathrm{Y}\left(\mathrm{q}^{2}\right)=\mathrm{C}_{9}$ eff $\left(\mathrm{q}^{2}\right), \quad$ "taking into account the charm loop" $\mathrm{C}_{7}->\mathrm{C}_{7}$ eff

* for C_{7} eff this seems ok at lowest order (pure UV effect; scheme independence)
* for C_{9} eff amounts to factorisation of scales $\sim \mathrm{m}_{\mathrm{b}}\left(, \mathrm{m}_{\mathrm{c}}, \mathrm{q}^{2}\right)$ and \wedge (soft QCD)
* not justified in large-N limit (broken already at leading logarithmic order)
* what about QCD corrections?
* not a priori clear whether this even gets one closer to the true result!

Nonlocal term - another look

traditional "ad hoc fix" : $\mathrm{C}_{9}->\mathrm{C}_{9}+\mathrm{Y}\left(\mathrm{q}^{2}\right)=\mathrm{C}_{9}$ eff $\left(q^{2}\right), \mathrm{C}_{7}->\mathrm{C}_{7}$ eff
dominant effect: charm loop, proportional to ($z=4 \mathrm{~m}_{\mathrm{c}}{ }^{2} / \mathrm{q}^{2}$)

$$
\begin{gathered}
-\frac{4}{9}\left(\ln \frac{m_{q}^{2}}{\mu^{2}}-\frac{2}{3}-z\right)-\frac{4}{9}(2+z) \sqrt{|z-1|} \begin{cases}\arctan \frac{1}{\sqrt{z-1}}, & z>1, \\
\ln \frac{1+\sqrt{1-z}}{\sqrt{z}}-\frac{i \pi}{2}, & z \leqslant 1\end{cases} \\
C_{9}^{\mathrm{eff}}= \begin{cases}\left.4.18\right|_{C_{9}}+\left.(0.22+0.05 i)\right|_{Y} & \left(m_{c}=m_{c}^{\text {pole }}=1.7 \mathrm{GeV}\right) \\
\left.4.18\right|_{C_{9}}+\left.(0.40+0.05 i)\right|_{Y} & \left(m_{c}=m_{c}^{\overline{\mathrm{MS}}}=1.2 \mathrm{GeV}\right)\end{cases}
\end{gathered}
$$

ie a 5% mass scheme ambiguity

Nonlocal terms:heavy-quark expansion

leading-power: factorises into perturbative kernels, form factors,
LCDA's (including hard/hard-collinear gluon corrections to all orders)
$\alpha_{s}{ }^{0}: \mathrm{C}_{7} \rightarrow \mathrm{C}_{7}$ eff
$\mathrm{C}_{9} \rightarrow \mathrm{C}_{9}{ }^{\text {eff }}\left(\mathrm{q}^{2}\right)$
+1 annihilation diagram
$\alpha_{s}{ }^{1}$: further corrections to $\mathrm{C}_{7}{ }^{\text {eff }}\left(q^{2}\right)$ and $\mathrm{C}_{9}{ }^{\text {eff }}\left(\mathrm{q}^{2}\right)$
(convergent) convolutions of hardscattering kernels with meson light cone-distribution amplitudes

Beneke, Feldmann, Seidel 2001
state-of-the-art in phenomenology
unambigous (save for parametric uncertainties)
at subleading powers:
breakdown of factorisation
some contributions have been estimated as end-point divergent convolutions with a cut-off Kagan\&Neubert 2001, Feldmann\&Matias 2002
can perform light-cone OPE of charm loop \& estimate resulting (nonlocal) operator matrix elements

Khodjamirian et al 2010
effective shifts of helicity amplitudes as large as $\sim 10 \%$

New effect: spectator scattering

leading-power: everything factorises into perturbative kernels, form factors, meson light-cone distribution amplitudes (including hard/hard-collinear gluon corrections to all orders)

$$
h_{\lambda}=\int_{0}^{1} d u \phi_{K}^{*}(u) T\left(u, \alpha_{s}\right)+\mathcal{O}\left(\Lambda / m_{b}\right)
$$

- leading power in the heavy quark limit - same as the vertex corrections going into $\mathrm{C}_{7}{ }^{\text {eff }}, \mathrm{C}_{9}$ eff

Long-distance charm loop

 light-cone SR based on Khodjamirian et al 2010 for K* helicity amplitudes SJ, Martin Camalich 2012 one outcome: two tests of right-handed dipol transitions remain clean
for error estimate, introduce polynomial model in $q^{2} /\left(4 m_{c}{ }^{2}\right)$

Light-quark contributions

Operators without charm have strong charm or CKM suppression; power corrections should be negligible.

However, they generate (mild) resonance structure even below the charm threshold, presumably "duality violation"
Presumably ρ, ω, φ most important; use vector meson dominance supplemented by heavy-quark limit $\mathrm{B} \rightarrow \mathrm{VK}^{*}$ amplitudes

estimate uncertainty from difference between VMD model and the subset of heavy-quark limit diagrams corresponding to intermediate V states.

Helicity hierarchies in hadronic B decays prevent large uncertainties in Hv^{+}from this source, too.

High-q² region (sketch)

- spectator scattering mechanism power-suppressed
- above open-charm (and perturbative-charm) thresholds
- however, for $q^{2} \gg 4 m_{c}{ }^{2}$, OPE at amplitude level

Grinstein, Pirjol 2004; Beylich, Buchalla, Feldmann 2011

Duality violation (三 error beyond OPE)

- expected on general grounds for OPE above threshold
(Chibisov et al; Shifman 1990's)
- pronounced resonant structure observed

- difficult to quantify uncertainty due to this

Beylich, Buchalla, Feldmann 2011
(Chibisov et al; Shifman 1990’s)
(Lyon, Zwicky 2013)

- like in low-q², probably best to stay away from the charm threshold region in looking for new physics

