

Development of Diagnostics for PW and multi-PW lasers

Jaroslav Moravec

FOTON, s.r.o.

Why? What? Who?

• FOTON, s.r.o.

PW diagnostics + Challenges

FOTON, s.r.o.

- founded 2000
- Czech private company (LTD)
- Development and manufacturing of special electronic devices
- Studénka 1509 01 Nová PakaCzech Republic

www.fotons.cz

"From system design to k delivery of final product ..."

- Founded 2000
- SME
- PIC (FP7) : 968991880
- Special innovative firm
- R&D + manufacturing

Complex services for R&D

Company history

- 2000 FOTON founded, instrumentation for PALS
- 2001 X-ray laser instrumentation
- 2002 diagnostics for tokamaks
- first high voltage supplies
- Multidrive16
- first exports
- 2007 Škoda Auto a.s.
- 2008 Joint Institute of Nuclear Research, Dubna, RF
- 2010 ELI vacuum system
- 2011 LA3NET (Liverpool)

Products overview

More than 140 prototypes during 15 years

nA-100s A uV-10s kV uW-kW UV-IR

High voltage supplies

Micropositioning

Optoelectronics

High temperature plasma diagnostics

Special systems

Vacuum controllers

Current and voltage power supplies

Industrial control systems

High voltage power supplies

Low – middle – high power, voltage up to 20kV (60kV)

HVG 2000

Micropositioning

System Multidrive 16+

High temperature plasma diagnostics

Signal processing, generators and controllers for experiments

Vacuum control systems

High reliability control systems (HW, SW) for vacuum pumping

VCU 2000

ASU 2009

Voltage and current power supplies

DC – AC – waveform – programmable, up to 500 A, peak power 40 kW

Automation and industrial process control

Industrial projects:

Automatic pressure station

Large experiments:

Do you need a solution?
You know, WHAT, but you don't know HOW?
Have you not power / capacity?

...contact FOTON

ELI-Beamlines: European laser research facility

ELI-Beamlines aerial view – 2011 artist's impression

July 2015: building opened for technology installation

ELI-Beamlines master scheme: 4 laser systems

ELI-Beamlines will use new concepts of heat extraction from the laser gain medium to achieve high repetition rates

THIN DISK: active mirror ≥kHz rep. rates ~kW average power

MULTISLAB: face cooling by He gas ≥10 Hz rep. rates

> kW average power

Active medium

Pump Extraction
Optical window

MULTISLAB: face cooling by liquid up to 10 Hz rep. rates High energy (>kJ) lasers

Used in L1

Courtesy T. Metzger (MPQ Garching)

Used in L2 and L3

Used in L4

ELI-Beamlines laser systems: L1 / L2 / L3 / L4

ELI-Beamlines lasers: in-house development + suppliers

Beamline	L1	L2	L3	L4
Peak power	>5 TW	PW	≥PW	10 PW
Energy in pulse	100 mJ	≥15 J	≥30 J	≥1.5 kJ
Pulse duration	<20 fs	≤15 fs	≤30 fs	≤150 fs
Rep rate	kHz	10 Hz	10 Hz	1 per min
Supplier	Pump lasers from commercial suppliers	External supplier / developer	Major contractor	Major contractor
ELI-Beamlines development	Short pulse chain developed in house	Specific technology development	Cooperative development of subsystems	Cooperative development of subsystems

Example of ELI-Beamlines laser technology: L1 picosecond compressor

L3-HAPLS laser: cooperation with Lawrence Livermore National Laboratory (USA)

Main challenges for development of PW laser diagnostics

1) High repetition rate

- The diagnostics must operate at high repetition rates (1 kHz for the L1 laser, and 10 Hz for the L2 and L3 lasers) and data has to be retrieved & stored

2) On-line measurement capability

- Laser pulse parameters have to be provided "on the shot", i.e. without deviating entire laser output to the diagnostics (deviating of attenuated laser output to diagnostics is a widely used approach in current diagnostics)
- Diagnostics of the output laser pulses has to provide machine safety functions, e.g. stopping the laser if any early signs of damage of optics are detected

3) Automation

- The diagnostics package must be a "turnkey" system and must be integrated into control system of the laser

4) Reproducibility and reliability

- The diagnostics must provide same data over extended period of time, without need for readjustments and/or for realignment

Example: automated spatial diagnostics developed

1) Near & Far field+ WavefrontIntensity profilepointing, wavefront

2) Dark field

Real-time damage detection

3) Polarization measurement

Spatially / spectrally resolved polarization

Dark field image: automated beam spatial diagnostics

Near-field & Far-field modules

PSD

Temporal diagnostic: single-shot autocorrelator pulse length

Development of system with LabView real-time (LVRT) drivers and SW

Specifications

Pulse duration:

12-70 fs

Required energy:

>10 µJ

Resolution:

up to 1.7 fs (4.4 μm px)

Repetition rate:

up to 20 Hz

Attenuation:

fully variable (0-max)

Polarization:

linear

Third-order autocorrelator (contrast measurement)

Development of core functions on LabView real-time drivers & SW & library for processing

Specifications

Dynamic range: >10¹⁰ (100 dB) goal 10¹¹ (110 dB)

Scanning range: up to 200ps

Required energy: >100μJ

Repetition rate:

Slow - scanning
(depends on resolution)

Polarization: linear

Example: Integrated short pulse diagnostic package

Temporal diagnostics

SHG autocorrelator (pulse duration)
 SPIDER / Wizzler (pulse duration, spectral phase)
 3rd order correlator (contrast measurement)

Spatial diagnostics

Near-field camera (beam profile, alignment)
Far-field (wavefront, alignment)
Wavefront sensor (wavefront)
Polarization module (spatially & spectrally resolved)
Dark-field (damage recognition)

Power/energy, spectrum

Full aperture power meter (absolute meas. & calibration)
Pulse shot-to-shot energy (diode + integrating sphere)
Pulse optical spectrum

- Fully automated, 10 Hz real time operation
- Signals for feedback and alignment
- Pulse / beam diagnostics at the output of the final amplifier (before compression) and diagnostics of the compressed pulse

Diagnostics integration with laser control system

