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Why use THz frequencies? 

Very high fields strength possible 
>> 100 MV/m demonstrated 

 
Direct control of electric field profile 
        frequency / phase control of THz field 

  
Time structure well matched to  <100 fs bunches 
 

• Generation & coupling of polarisation states (Longitudinal polarisation) 
• Dispersion control 
• Velocity matching of THz to particle:      Vf = b  
• Wakefields, beam-loading, …. 

 
 

  

Challenges 

   

time 
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Radio frequency 

• Frequency  3 GHz  
     period  300ps,   

• l  10cm 
      Cavity aperture ~2 cm 

• Eacc ~ 10- 100 MV/m 

• Pulse length:  5 ms (superconducting) 
                         5 ms (normal conducting) 

• Energy to cavity: ~10J 

Optical Laser 

• Frequency  300 THz  
      period  3 fs,   

• l  1mm 
      Cavity aperture  1mm 

• Eacc  100MV/m to  >> GV/m 

• Pulse length 20fs – 1ps 
 

• Energy to ‘cavity’:  ~1mJ  

• pulse duration ~ bunch duration   (energy efficiency) 
• Very high field strengths possible (material breakdown);  compact accelerators 
• Oscillation period short, in desired femtosecond regime 

Laser advantages:  

• Oscillation period too short, below ~ps injection capability 
• Small apertures:    wakefield perturbations on beam;  

                                  injection & extraction  beam transport 
                                 manufacturing of structures (10’s nm precision) 

Laser disadvantages:  
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Radio frequency 

• Frequency  3 GHz  
     period  300ps,   

• l  10cm 
      Cavity aperture ~2 cm 

• Eacc ~ 10- 100 MV/m 

• Pulse length:  5 ms (superconducting) 
                         5 ms (normal conducting) 

• Energy to cavity: 10’s-100’s J 

Lasers 

• Frequency  300 THz  
      period  3 fs,   

• l  1mm 
      Cavity aperture  1mm 

• Eacc  100MV/m to  >> GV/m 

• Pulse length 20fs – 1ps 
 

• Energy to ‘cavity’:  ~1mJ  

• pulse duration ~ bunch duration   (energy efficiency) 
• Very high field strengths possible (material breakdown);  compact accelerators 
• Oscillation period short, but longer than desired pulses 

THz advantages:  

•  Broadband pulses – controlling dispersion 
• Small apertures:    wakefield perturbations on beam;  

                                  injection & extraction  beam transport 
                                 

THz disadvantages:  

THz 
• Frequency  1 THz  

      period  1 ps,   

• l  300mm 
      Cavity aperture  1 mm 

• Eacc  100MV/m to  >> GV/m 

• Pulse length  1-5 ps 
 

• Energy to ‘cavity’:  ~10-100 mJ  
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Direct acceleration with THz 
• Longitudinal fields,  (for linear acceleration) 

• Velocity phase matching  over interaction length   

Longitudinal fields  e.g TM10 Gaussian 

Phase velocity in free-space vf > c  

10 MeV       b = 0.95                    20 l rad  

1 GeV          b = 1 – 5x10 -4                2000 l rad  

L slip = b l rad /(1- b) 

• Guoy phase-shift : interaction limited to  
Rayeigh length 

• Slippage compared to v=c 
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Transverse field 

Longitudinal field 
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Time snap-shots of particle energy and accelerating field 
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Particle acceleration  
with TM*

10 fields 

• Analytic expressions for  
potentials A(x,t), f(x,t) 

• Evaluate motion in traveling frame 
       Qz = z-ct 
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• Net acceleration is possible 

• Limited by phase slippage to effective 
interaction length zRayleigh 

 



THz driven acceleration and synchronisation 

Active synchronisation of particle beams  
 THz driven synchronisation & bunching 

Critical issue for FEL pump-probe science 

Free-space still has potential application despite acceleration limits 
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THz driven electron-diffraction 

• 200 keV – 5 MeV 
• Femtosecond laser-electron synchronisation  

Requirements 



Ey 

Radial bias 
(120kV pulse) 

Generating Longitudinal Polarised THz pulses  

  I: Photoconductive antenna 

Ex 

Longitudinal field implicit from E = 0 

           Simple & efficient 
but    Lacks temporal shaping capability 

Transverse field  

from current surge 
            generates  

charge separation 

origin of  

longitudinal  

field 
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0.2 MV/m longitudinal fields from photoconductive antenna 

Cliffe et al. Appl. Phys. Lett. 105, 191112 (2014) 

Transversely polarised field 

Longitudinally polarised field 

x6 below semiconductor saturation 
    capable of >1.2MV/m with more laser energy 
 Further increases requires larger antenna 
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Predicted energy gain for 20 MeV beam 

Energy Modulation by Interaction with THz Radiation 
An experiment on ALICE energy recovery linac 
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Proceedings of FEL’2012 
Jamison et al. 



Typical measured E(t) 

300 fs  

THz generation by Optical Rectification  
Difference frequency mixing by broadband ultra-short optical pulse 

Laser field 

E(t) ~ A(t)cos(w0t) 

dA(t)/dt 
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Convolve over all  
combinations of frequencies 

THz pulse 

2nd harmonic 
 generation 

Very high fields strength possible 
• > 100 MV/m possible 
•  5GV/m reported (at focus) 

•  Available polarisation states restricted  by cijk
(2)  tensor 

 
 

  

Challenges for application to acceleration 

  plane wave emission  longitudinal polarisation ??? 

• Velocity matching of THz to particle:      Vf <c in free-space     
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Transverse plane wave  longitudinal polarisation 

Paired non-linear polarisation/source for 
opposite polarity THz fields 

Ez generated from discontinuity 

PD1 

PD2 

Pump 
laser 

Probe laser 

THz 

E ~ V(PD1) – V(PD2) 

Detection Electro-optic crystal 
      sensitive to either E  or Ez   
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Longitudinal polarisation in LiNbO3 

High-field strength non-linear material 
Requires non-collinear & ‘tilted pulse front’ phase matching  

Cliffe et al. Appl. Phys. Lett. 108, 221102 (2016) 

1.1 MV/m longitudinal field 
(with only 1mJ laser energy) 
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Dielectric Laser acceleration approach 

• 20um beams size injected into <10um aperture 
• ~1ps duration injected into 3fs period structure 

Recent results from SLAC 
Peralta et al. Nature 503, 91 (2013) 

Transverse propagating field 

Periodic p/2 phase-shift from  
     dielectric step 

Time snap shots of field 

Velocity matching of particle and accelerating field 

Dielectric Lined waveguide approach 
vf <c possible, but dispersive 

Jamison et al, Appl. Phys. Lett 76 1987 (2000) 

Recent results from MIT/DESY 
Nani et al. Nature Comm.6 8486 (2015) 
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Waveguide Dispersion 



Waveguide Dispersion & coupling 
Design, simulation for coupling and velocity matching THz source 
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….  Alisa Healy’s presentation 



Dispersion-free single-cycle pulse velocity matching 
THz pulses have >100MV/m fields because they are single-cycle 

Intrinsically broadband  -  waveguide propagation can not maintain field strength 
Single-cycle  - transverse pumping & p-phase jump structure not applicable 

• Phase-fronts remain  to propagation 
• Pulse (group) front can be arbitrarily tilted w.r.t propagation 

Antenna / Non-lin. Xtal 

TH
z 

em
it

te
r 

Phase-fronts 

Vf
eff 

Diffraction grating & broadband ultra-short pulses  
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Longitudinal fields generated by subluminal source 

Propagation from boundary  
extended because of single-cycle  
structure 
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Transverse fields generated by subluminal source 
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Measuring the propagating wave with EO detection 

Retro-reflect probe  
from rear surface 

To polarisation 
monitoring PDiodes ... Probe from  

optical delay-line 

Phase matching & high-power THz 

z 

For efficient THz generation require THz generated 
locally within crystal to add coherently 

Satisfied for collinear geometry in ZnTe, GaP 
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vf =  

Subluminal Dispersionless Source    
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Demonstrating the travelling-wave source concept 



vf = c 

vf = 1.75c 

vf = 0.75c 

vf =  
(no-tilt) 

vf =  

Subluminal Dispersionless Source    
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Longitudinal Electric field Ez 

Demonstrating the travelling-wave source concept 



7MV/m measured from LiNbO3 
    < 2mJ pump energy    (>100mJ available) 
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• Non-collinear phase matching 
• Cherenkov emission for THz  

                  tilted pulse-fronts for efficient generation     

LiNbO3 High-field travelling-wave source 
Refractive indices: nTHz ~ 5   ;    nOpt ~ 2 



Standard pulse-front tilt  
for efficient THz generation 

…with additional pulse-front tilt  
for source propagation. 
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LiNbO3 High-field travelling-wave source 
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Concept to physical implementation 
Complicated geometry to match accelerator/injector horizontal plane 



THz ‘Travelling source’ Deflector  
 

Simulation based on laser-lab demonstrated source/structure 

10MV/m THz source, travelling wave configuration 
200MeV electron beam 
1cm interaction, 1 metre drift 

20 fs resolution with 1cm structure 

S.P. Jamison, La3net Novel Acceleration workshop, Paris, October 2016 



THz ‘Travelling source’ Deflector  
 

Simulation based on laser-lab demonstrated source/structure 

10MV/m THz source, travelling wave configuration 
200MeV electron beam 

20 fs resolution with 1cm structure 
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THz ‘Travelling source’ Deflector  
 

Simulation based on laser-lab demonstrated source/structure 

10MV/m THz source, travelling wave configuration 
200MeV electron beam 
1cm interaction, 1 metre drift 

20 fs resolution with 1cm structure 
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Time 
bframe = c 

Accelerating fields Deflecting fields 

Symmetric structure for Acceleration  
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Walsh et al.   arXiv :1609.02573  (2016) 
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Experiment for THz driven Acceleration on VELA 

• Symmetric THz excitation – cancels deflection 
• Longitudinal velocity b=0.995, matching 4.5MeV 

 
• Targeting >100keV acceleration in 10mm 

In-situ velocity measurement for tuning 

no actual charge  
separation with  

acceleration: b = 0.995 1
5

m
m

 

750mm 

Single-shot referencing 
mitigating shot-shot jitter 
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‘Latte’ lab,  coupled to VELA user station 
LAser THz and Terawatt Experiments for accelerator applications 

Experiment for THz driven Acceleration on VELA 
From demonstration of source to demonstration of particle acceleration 

VELA : Versatile Electron Linear Accelerator Experimental station 
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• 750um crystal spacing 
• 500um  slit aperture for beam 

 
• Alignment diagnostics/screens 
• Laser-electron synchronisation 

    system(s) 
• THz spatial imaging (velocity tuning) 

 

Electron spectrometer 
• Vertical imaging of IP 
• Horizontal focusing  

      + dispersion  

Interaction point (IP) 
• 4.5MeV 
• 1pC-100pC 
• Low emittance, low energy spread 
• Short duration  

  (space-charge limited, ~2-3ps) 

Injected electrons 

3D printed  
crystal assembly 
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In summary 

• High potential for THz  acceleration, bunching, deflection of 
electron bunches 

• Velocity matching and dispersion management significant 
challenges  

• real demonstrations happening and in pipe-line 
 

•  Novacc:  
    THz acceleration & manipulation as injector to DLA structures. 
    CLARA/VELA available as test facility.   
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