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Motivation & Applications

e High frequency and high strength electric fields, and
accelerating gradients

e ‘Passive’ component, no external lasers or gases required

e Now seen SiO, cylinders drive 320 MV/m accelerating
gradients [1]

e Manipulate the bunch, including removal of correlated energy
spread (dechirping)

e Understand bunch charge limitations in small scale
(externally driven) dielectric waveguides

[1] O’'Shea, B. D., et al. "Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient
dielectric wakefield accelerators." Nature Communications 7 (2016)



Theory
overview

1) Relativistic electron
bunch with ‘pancake’
electric field

2) Image charge created
in dielectric, cannot
propagate at c due to
e >1

3) The field is reflected
at the metal layer
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Experimental Plans

e 45 MeV, 250 pC bunch from CLARA/VELA accelerator at
Daresbury

e Dog-leg compression could give bunches downto o, =50 pm

e No drive-witness acceleration studies

e Focus on head-tail acceleration studies

e Will be able to vary transverse bunch profile
o Implications for stability of bunch

e Collect and characterise the THz radiation produced in the
structure
o Aiming for high tunability



Notation

e Chemical Vapour Deposition a n d
(CVD) Diamond for the

dielectric layers. . -
|deal material: high thermal d Ie I eCtrI C
conductivity, low loss tangent

at THz frequencies, and can

be deposited in thin layers

For all cases €. = 5.68 and

does not vary with frequency




Achieving tunability vs. field strength

2D Analytics - Developed from [2]
Thin dielectric layer gives most tunability.

Thin layer means more dependent on
waveguide size and less on Cherenkov

interaction region.
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3D Treatment in CST

Wake spreads transversely as it
propagates.

Field magnitude is dependent on thickness
and gap.
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[2] Tremaine, A., J. Rosenzweig, and P. Schoessow. "Electromagnetic wake fields and beam stability in slab-symmetric dielectric

structures." Physical Review E 56.6 (1997): 7204.



Using Impact-T

e PIC Space charge tracking code developed at LBNL J. Qiang [3,4]
e DWA element by D. Mihalcea based on 3D extension of [2]
e Use of this element validated against VSim in [5], agreement of

energy loss & spread within 5%

e 3D simulation, including transverse wakes.
e Fourier decomposition of the horizontal bunch profile to get
coupling to higher order modes.

e Horizontal bunch profile is symmetric and cannot be offset.

[4] http://portal.nersc.gov/project/m669/IMPACT-T/

[3] Qiang, Ji, et al. "Three-dimensional quasistatic model for high brightness beam dynamics simulation." Physical Review Special
Topics-Accelerators and Beams 9.4 (2006): 044204.

[5] Mihalcea, D.,et al.. "Three-dimensional analysis of wakefields generated by flat electron beams in planar dielectric-loaded
structures." Physical Review Special Topics-Accelerators and Beams 15.8 (2012): 081304.



http://portal.nersc.gov/project/m669/IMPACT-T/
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LPS: L; =1cm, a = 100um, 6 = 125um LPS: L, = 1cm, a = 350um, 6 = 125um

Correction for
negative chirp

e Used for chicane

compression
Experimentally
demonstrated in [6]
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Future work

e Tunability of positive dechirper for varying energy spread
e Validate Impact-T against VSim (transverse wakes)
e Utilise a more physically reasonable input bunch for

CLARA-FE

e Detailed analysis of transverse wakes and stability

e Development of Martin-Puplet Interferometer for
characterisation of wake spectrum

e Looking towards starting experiment in 2017



e Highly tunable structure will not be
optimised for high gradient acceleration

e Simulations show DWA can be used for
variably dechirping both positive chirp

e Preparations being made for
experimental work in 2017



