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Self-modulation instability (SMI)
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Indirect Measurement of SMI

Proton charge density, Iog10N
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Analyze p+-bunch with [l |11
microbunch-irain after il
plasma cell Rt

3 Methods: -goo -200 100 0 100 200

Z, mm

* Measurement of bunch-size on scintillating screen
- Optical transition radiation: direct signal from each proton

« Coherent transition radiation: Measure electric field
__ﬂomponent from charge density modulation
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Transition radiation

Relativistic particles
incident on metallic /
dielectric surface

= Radiation from
induced surface- ~
currents o

Approaches (e.g.):
- Virtual photon method

- Surface-current
method

Investigate effects of
near-field and finite
screen
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AWAKE CTR-simulations

Using p+-distribution from
beam-plasma PIC-simulation

Summing up fields of each p*

Proton-bunch modulated at
plasma wavelength

- CTR-signal at plasma
COHERENT
transition radiation: frequency
- ~N_,2

Vary Plasma density between
n=10'%* cm-3 and n=10"" cm?"3

=» Plasma frequency between
folasma =70GHz and
_ foiasma = 300GHz.

->much stronger
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Coherent Transition radiation
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Backward CTR

Forward CTR

Self-modulation Instability
- radially modulated bunch density
- Radially polarized CTR-electric field
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CTR-signal from SMI

Simulation of CTR-
radiation in AWAKE:

« Ginzburg-Frank v
« Surface current °
method. :
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CTR from SMI in AWAKE

Temporary evolution of CTR-pulse
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Diagnostics for SMI-CTR
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CTR-diagnostics: Overview
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CTR-diagnostics: Overview
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1) Integrated TR-
measurement

2) Time-resolved
CIR-power
measurement:
different
bandwidth-
systems
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CTR-diagnostics: Overview
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CTR-diagnostics: Overview
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2x Heterodyne Measurement

- Down-mixing CTR-signal by  fr~26QGHz

known reference: 7 f ~10GHz
fir = fop = f fe~270GHZ pMixer /

. Measurement of signal ZiC:O‘I’:kY

f~ 10-20 GHz on fast oscilloscope

(20-40GHz bandwidth) Expected signal (f-=10GHz)

« Beamline at 15m distance from |
oscilloscope (shielding)
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Heterodyne Measurement 1

Mixing of reference
with CTR close to
beamline

Reference signal by
mixing slightly detuned
lasers

Transmission of
f~10-20GHz in low-loss
coaxial cables
Tunable over entire CTR
frequency-range

~10-15 GHz out "%

Detuned Lasers, CTR-signall

including

f =100-300GHz

fiber

191.0 THz (~1550nm)
tunable laser -

191.27 THz (~1550nm)Y’]
tunable laser
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Heterodyne Measurement 2

Basic sketch

- H-Miter Bend
8116 mm
%
"’2\‘ Top View
. . . 3674 mm
CTR-fransmission line

%\N"

Mixing of reference
with CTR close to
oscilloscope

WR90 rectangular waveguide (23x10mm)
with ‘tall’ TE;,-mode:

Best compromise between
- Ohmic losses
Miter bend losses
- Taper losses
- Alignment sensitivity

(w)

polarization &
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Heterodyne Measurement 2

« Reference signal by frequency-multiplied tunable
local oscillaterTransmission of RF over 15m
* Only over less than one waveguide-bandwidth

- Better signal efficiency

VDI heterodyne

receiver from EPFL 3 e
- - ‘ df
S “ W f=|f, - 244 |
. A\ <4GHz
\ Local
~10-15 GHz out i Oscillator
- f,=10-12GHz
RF In | - !
‘, 3 RF Homs il Frquency- PC-control
antenna multiplyer
chain
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Status & Outlook

 All diagnostics close to beamline
installed and commissioned

« RF-transmission line installation in
next weeks

 First SMI-experiments for 1 week in
December 2016
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Summary & Planning

Essential measurement of microbunch-train due
to SMI

CTR-simulations predict strong signhal plasma-
frequency, at larger angles

Variety of diagnostics for integrated, time-
resolved and frequency-resolved measurement

Two kinds of heterodyne measurement
First measurements expected end of this year



Thank you for your attention!

21 AWVAKE—




MAX-PLANCE-CESELLESCHAFT 22] 0201 6 /l T‘/—/‘_IGE_‘



Details of CTR-calculation

MAX-PLANCE-CESELLSCHAFT

Single particle Ginzburg-Frank (GF) formula - valid for infinite screen and far-field

Spectral components of electric and magnet fields are:
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Surface current (SC) method - valid for flat screen of any shape and any distance towards observer

Vector-potential of the surface field fsi wi| as asource:
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CTR-Transmission line

8116 mm
%‘»
2 Top View
4
E-Miter Bend

Total estimated coupling into
TE;p,-mode in waveguide:
2-3% of total field
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H-Miter Bend

3674 mm
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