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Abstract

These lecture notes give a short review of fundamental aspects of Relativistic
Quantum Mechanics, with the aim to preparing students for lectures on the
Standard Model.
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1 Special Relativity

1.1 Fundamentals

A ray of light as a speed c which is independent of the inertial observer
who measures it. As a consequence, the time t and space coordinates r⃗
corresponding to a massive particle must be measured differently by differ-
ent inertial observers. The invariance of the speed of light implies that the
infinitesimal motion of the particle is such that

c2dt2 ´ pdr⃗q2 “ c2dτ 2 , (1)

where dτ is the infinitesimal proper time measured by a clock in the particle
rest frame. The velocity of the massive particle, measured in this inertial
frame, is v⃗ “ dr⃗{dt, such that eq.(1) implies

dτ “
dt

γpvq
” dt

a

1 ´ v2{c2 . (2)

In Newtonian Mechanics, the time t is independent of the inertial frame, such
that a frame-independent definition of the particle momentum is p⃗ “ mdr⃗{dt.
In Relativistic Mechanics, it is rather the proper time of the particle which is
independent of the frame where it is calculated, and the frame-independent
definition of the particle momentum is then

p⃗ ” m
dr⃗

dτ
“ γpvqmv⃗ . (3)

From the identity (1) it is then easy to see that

rγpvqmc2s2 “ rmc2s2 ` rpcs2 , (4)

and a Taylor expansion of the left-hand side gives

γpvqmc2 “ mc2 `
1

2
mv2 ` ¨ ¨ ¨ , (5)

where dots represent higher orders in v2{c2. As a consequence, the energy of
the free particle is

E “ γpvqmc2 , (6)

and contains: the rest energy mc2, the Newtonian kinetic energy mv2{2 and
relativistic corrections (dots). The dispersion relation is thus

E2 “ m2c4 ` p2c2 , (7)

and is characteristic of a relativistic free motion.
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1.2 Example: particle submitted to a constant and
uniform force

Consider a particle of mass m, initially at rest at x “ 0, moving along the
x-axis under the influence of the constant and uniform force f⃗ “ f e⃗x. The
potential energy from which the force derives is ´fx, and energy conservation
reads

γmc2 ´ fx “ γp0qmc2 ´ fxp0q “ mc2 , (8)

such that

γpτq “ 1 `
fxpτq

mc2
. (9)

The relativistic equation of motion

d

dt

ˆ

mγ
dx

dt

˙

“ f (10)

can be written in terms of the particle proper time τ as

m
d2x

dτ 2
“ γf , (11)

where the relation (2) was used. Using the previous expression for γ, we find

d2x

dτ 2
´

f 2x

m2c2
“

f

m
, (12)

which, given the initial conditions, has the solution

xpτq “
mc2

f

„

cosh

ˆ

fτ

mc

˙

´ 1

ȷ

. (13)

The gamma factor is then

γ “ cosh

ˆ

fτ

mc

˙

, (14)

and one can calculate the speed of the particle, measured in the laboratory
frame:

dx

dt
“

1

γ

dx

dτ
“ c tanh

ˆ

fτ

mc

˙

. (15)

As expected, the speed asymptotically goes to c when τ Ñ 8, and it does
not diverge linearly as in the Newtonian case.
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1.3 Covariant notations

In what follows we set c “ 1.
The aim of covariant notations is to provide compact expressions for relativis-
tic quantities, by extending the usual 3-dimensional space vector notations
to 4-dimensional spacetime. We define the 4-vector position

xµ ” pt, r⃗q , (16)

where the Greek index µ runs from 0 to 3. The infinitesimal change in proper
time (2) can then be written

dτ 2 “ dxµdxνηµν , (17)

where a repeated index implies the summation over its values, and the matrix
ηµν is the Minkowski metric

ηµν

¨

˚

˚

˝

1 0 0 0
0 ´1 0 0
0 0 ´1 0
0 0 0 ´1

˛

‹

‹

‚

. (18)

One also defines xµ ” ηµνx
ν “ pt,´r⃗q, such that dτ 2 “ dxµdxµ. Note that

one can also define the opposite convention ηµν “diagp´1, 1, 1, 1q.
The derivative of a quantity with respect to xµ gives a lower index and vice
versa:

Bµ ”
B

Bxµ
and Bµ ”

B

Bxµ
. (19)

The 4-momentum is

pµ ” m
dxµ

dτ
“ pE, p⃗q , (20)

and the dispersion relation (7) reads then pµpµ “ m2. Finally, one defines
ηµν as the elements of the inverse metric ηµν , which have the same values as
shown in the expression (18), since the metric is diagonal, with unit matrix
elements. The trace of Minkowski metric (18) is then

ηµνη
µν “ 4 . (21)
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1.4 Classical Electrodynamics

We know that the electromagnetic field can be expressed in terms of the
potentials V, A⃗ as

B⃗ “ ∇⃗ ˆ A⃗ (22)

E⃗ “ ´∇⃗V ´ BtA⃗ ,

and these potentials are not unique: the physical fields E⃗ and B⃗ are invariant
under the gauge transformation

A⃗ Ñ A⃗ ` ∇⃗Λ (23)

V Ñ V ´ BtΛ ,

where Λ is any differentiable function of spacetime coordinates. One then
defines the 4-vector potential

Aµ ” pV, A⃗q , (24)

and the gauge transformation (23) can be written

Aµ Ñ Aµ ´ BµΛ . (25)

The field strength tensor is

F µν ” BµAν ´ BνAµ “

¨

˚

˚

˝

0 E1 E2 E3

´E1 0 B3 ´B2

´E2 ´B3 0 B1

´E3 B2 ´B1 0

˛

‹

‹

‚

, (26)

from which the Maxwell equations read

BµF
µν “ jν (27)

BρF µν ` BµF νρ ` BνF ρµ “ 0 ,

where the 4-current jν “ pρ, j⃗q is made from the charge density ρ and the
current density j⃗, and the second identity is a consequence of the definition
of F µν .

Electric charge conservation can be derived from the continuity equa-
tion as follows. Given the antisymmetric nature of F µν , one necessarily has

5



BµBνF
µν “ 0, which, together with the equation of motion (27), leads to

current conservation Bνj
ν “ 0. In terms of the charge and current densities,

this takes the form of the continuity equation

Btρ ` ∇⃗ ¨ j⃗ “ 0 . (28)

The latter can be integrated over a 3-dimensional volume V to give

dQ

dt
`

ż

V
∇⃗ ¨ j⃗ d3x “ 0 , (29)

where Q is the total charge, and Gauss theorem leads then to

dQ

dt
`

¿

BV

j⃗ ¨ n⃗ d2a “ 0 , (30)

where BV is the closed boundary of V , with unit normal vector n⃗ at each
point. The latter relation is valid whatever the volume V , which can be taken
to infinity. The flux of j⃗ across its boundary BV goes then to 0, since the
sources are localised in space, and the total electric charge satisfies dQ{dt “ 0,
which shows charge conservation.

1.5 Action for the Electromagnetic field

We show here that the action from which the equation of motion (27)
arises is

SEM “

ż

d4x

ˆ

´
1

4
F µνFµν ´ jµA

µ

˙

. (31)

For this, we note that

δ

δAνpxq

ż

d4y jρpyqAρpyq “

ż

d4y jρpyqδp4qpx ´ yqηρν “ jνpxq , (32)

and

δ

δAνpxq

ż

d4y BσAρpyqBρAσpyq “ 2

ż

d4y BσAρpyqBρδp4qpx ´ yqηνσ

“ ´2BνBρAρ . (33)
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as well as

δ

δAνpxq

ż

d4y BσAρpyqBσAρpyq “ 2

ż

d4y BσAρpyqBσδp4qpx ´ yqηνρ

“ ´2lAνpxq , (34)

where

l ” BσBσ “
B2

Bt2
´ ∇2 . (35)

Note that the surface terms arising from the integration by parts vanish, be-
cause fields are assumed to decrease quickly enough at infinity. The equation
of motion (27) is then obtained from the variational principle

0 “
δSEM

δAνpxq
“ lAν ´ BνBρAρ ´ jν

“ BµF
µν ´ jν . (36)

2 Quantum Mechanics

2.1 Heisenberg uncertainties

Particle-wave duality can be expressed by the equivalence of the two
monochromatic plane waves representations

exppi⃗k ¨ x⃗ ´ iωtq “ exp

ˆ

i
p⃗ ¨ x⃗

ℏ
´ i

Et

ℏ

˙

. (37)

and a general signal can be represented as a wave packet, sum of different
plane waves with different weights. For simplicity we consider a wave packet
ψpx, tq propagating in one dimension, with the relativistic dispersion relation
E2 “ m2 ` p2, and the Gaussian weight

A exp

ˆ

´
pp ´ p0q

2

∆p2

˙

. (38)

This weight is centered on the momentum p0 and has the width ∆p. In the
limit where m ăă p0, the energy is E » |p| and the wave packet is

ψpt, xq “ A

ż 8

´8

dp

2π
exp

ˆ

ipx

ℏ
´
iEt

ℏ
´

pp ´ p0q
2

∆p2

˙

(39)

» Aeip0px´tq{ℏ
ż 8

´8

dp

2π
exp

ˆ

i

ℏ
ppx ´ tq ´

p2

∆p2

˙

, (40)
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where the mistake made from the replacement |p| Ñ p is negligible if the
main contribution of the integrand occurs for p around p0 ą 0. The Gaussian
integral gives then

ψpx, tq9 exp

ˆ

i

ℏ
p0px ´ tq ´

px ´ tq2

∆x2

˙

, (41)

where ∆x ” 2ℏ{∆p. The wave packet features two characteristics:
‚ The wave packet propagates with the momentum p0;
‚ The wave packet has a Gaussian shape, centered on the event x “ t, with
width satisfying ∆x∆p “ 2ℏ. Given the dispersion relation E “ |p|, the
width in energy and the width in time are also related by ∆t∆E “ 2ℏ.

More generally, the Fourier transform relating a wave/particle to its spec-
trum, is such that the widths satisfy the Heisenberg uncertainties

∆x∆p » ∆t∆E » ℏ . (42)

2.2 States and operators

The static wave function

ψpxq “

ż

dp

2π
fppqeipx{ℏ (43)

can be seen as a vector living in an infinite-dimensional vector space (Hilbert
space), with coordinates fppq in the basis provided by the exponentials
exppipx{ℏq. The scalar product is defined as

ă ψ1|ψ2 ą”

ż

dxψ‹
1ψ2 “

ż

dp

2π
f ‹
1 ppqf2ppq , (44)

and |ψ|2 “ă ψ|ψ ą is the probability density to have the system in the state
ψ. Given that

´ iℏ
B

Bx
eipx{ℏ “ peipx{ℏ , (45)

exppipx{ℏq is an eigenvector of the space-derivative operator ´iℏBx, with
eigenvalue p. The space derivative is then identified with the momentum
operator p̂. The position operator x̂ acts as a multiplication by x and, given
the identity Bxpxψq “ ψ ` xBxψ for any function ψpxq, we have

rp̂, x̂s ” p̂x̂ ´ x̂p̂ “ ´iℏ1 , (46)

where 1 is the identity operator.
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2.3 Schrödinger equation

We consider here a wave function ψpx⃗, tq depending on space and time in
3 space dimensions. Since

iℏ
B

Bt
e´iEt{ℏ “ Ee´iEt{ℏ , (47)

expp´iEt{ℏq is eigenvector of the time-derivative operator iℏBt with eigen-
value E. The time derivative is then identified with the Hamiltonian operator
Ĥ, and the time evolution of a state ψ is given by the Schrödinger equation

iℏ
Bψ

Bt
“ Ĥψ , (48)

where the specific form of Ĥ depends on the system studied.
Quantisation is based on the remarks (45) and (47), by replacing physical
quantities by operators

E Ñ iℏ
B

Bt
and p⃗ Ñ ˆ⃗p “ ´iℏ∇⃗ , (49)

which act on the wave function of the system, in the Hilbert space of states.
For a free particle of massm, the Newtonian dispersion relation E “ p2{p2mq

thus leads to

iℏ
Bψ

Bt
“ ´

ℏ2∇2

2m
ψ . (50)

In the situation where the system interacts with a source with potential V px⃗q,
the Schrödinger equation is

iℏ
Bψ

Bt
“ ´

ℏ2∇2

2m
ψ ` V px⃗qψ . (51)

If one then looks for stationary solutions of the form

ψpx⃗, tq “ e´iEt{ℏχpx⃗q , (52)

the Schrödinger equation (48) consists in solving the eigenvector problem

ˆ

´
ℏ2∇2

2m
` V px⃗q

˙

χpx⃗q “ Eχpx⃗q , (53)

and quantisation of energy levels arises from the boundary conditions.
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2.4 Conserved current

A continuity equation of the form (28) can be obtained from the free
Schrödinger equation

i
Bψ

Bt
“

´ℏ
2m

∇2ψ . (54)

Multiplying both sides by the complex conjugate ψ‹ and taking the complex
conjugate of the whole equation leads to

i
Bψ

Bt
ψ‹ “

´ℏ
2m

ψ‹∇2ψ

´i
Bψ‹

Bt
ψ “

´ℏ
2m

ψ∇2ψ‹ , (55)

and the difference of these two equation reads

Bpψψ‹q

Bt
“

iℏ
2m

pψ‹∇2ψ ´ ψ∇2ψ‹q “ ´
iℏ
2m

∇⃗ ¨ pψ∇⃗ψ‹ ´ ψ‹∇⃗ψq . (56)

The latter identity can be written as eq.(28), where

ρ “ |ψ|2 (57)

j⃗ “
iℏ
2m

´

ψ∇⃗ψ‹ ´ ψ‹∇⃗ψ
¯

, (58)

and the continuity equation obtained in Quantum Mechanics corresponds to
the conservation of probabilities.

2.5 Bra and Ket

The interpretation of Quantum Mechanics in the context of linear algebra
allows a more abstract formalism, independently of the representation in
terms of functions of space and time. A state is represented by the bra |ψ⟩,
which is decomposed on a basis |k⟩ as

|ψ⟩ “
ÿ

k

ak |k⟩ , (59)

and the Hermitian conjugate of the bra is the ket ⟨k| ” |k⟩:. The basis is
orthonormal if

⟨k| l⟩ “ δkl , (60)
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and the projector operator on a specific vector basis |k⟩ is Pk “ |k⟩ ⟨k|. The
sum over all the projectors must be equal to the identity since, for any state
of the form (59), we have

ÿ

k

|k⟩ ⟨k| |ψ⟩ “
ÿ

k,l

al |k⟩ ⟨k| |l⟩ “
ÿ

k,l

alδkl |k⟩ “
ÿ

k

ak |k⟩ “ |ψ⟩ , (61)

such that
ÿ

k

|k⟩ ⟨k| “ 1 . (62)

2.6 Fermi’s Golden Rule

A Hamiltonian Ĥ0 has eigenstates |n⟩ with eigenvalues En, such that
Ĥ0 |n⟩ “ En |n⟩. We assume a time-independent perturbation ϵĤ1 to the
Hamiltonian, with ϵ ăă 1, which induces transitions between the different
unperturbed states |n⟩. The aim is to calculate the transition probability
from an initial state |i⟩, with energy Ei, to a final state |f⟩, with energy Ef

(we first assume the energy levels to be discrete). The Hamiltonian eigen-
states form an orthonormal basis for the Hilbert space

⟨n| m⟩ “ δnm . (63)

The time-dependent state of the system |ψptq⟩ is decomposed on the basis
of unperturbed states

|ψptq⟩ “
ÿ

n

anptq |n⟩ , (64)

and satisfies the Schrödinger equation

iℏBt |ψptq⟩ “ pĤ0 ` ϵĤ1q |ψptq⟩ (65)

“
ÿ

n

anptqpĤ0 ` ϵĤ1q |n⟩

“
ÿ

n

anptqpEn ` ϵĤ1q |n⟩ . (66)

We project this equation on the state |m⟩ to obtain (the only time dependence
is in anptq)

iℏ
ÿ

n

a1
nptq ⟨m| n⟩ “

ÿ

n

anptq
´

En ⟨m| n⟩ ` ϵ ⟨m| Ĥ1 |n⟩
¯

, (67)
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where a prime denotes a time derivative. Taking into account the condition
(63), we obtain then

iℏa1
mptq “ Emamptq ` ϵ

ÿ

n

H1
mnanptq , (68)

where H1
nm ” ⟨m| Ĥ1 |n⟩ is the perturbation matrix element for the transi-

tion form |n⟩ to |m⟩.

Zeroth order solution
Neglecting the perturbation, we obtain from eq.(68)

amptq “ amp0q exp

ˆ

´
i

ℏ
Emt

˙

` Opϵq , (69)

which is expected for the stationary states of the unperturbed Hamiltonian
Ĥ0.

First order solution
Taking into account the 0th order solution (69), the equation (68) can be
written

iℏa1
mptq “ Emamptq ` ϵ

ÿ

n

H1
mnanp0qe´iEnt{ℏ ` Opϵ2q . (70)

The initial state is such that anp0q “ δin, such that, when ignoring terms of
order ϵ2, the coefficient af ptq satisfies

iℏa1
f ptq “ Efaf ptq ` ϵH1

fi e
´iEit{ℏ , (71)

which can also be written

iℏBt
`

af ptqeiEf t{ℏ
˘

“ ϵH1
fi e

iωfit , (72)

with ℏωfi ” Ef ´ Ei. For f ‰ i, the initial condition is af p0q “ 0, and the
previous equation is solved as

iℏaf ptq “
ϵH1

fi

iωfi

`

e´iEit{ℏ ´ e´iEf t{ℏ
˘

(73)

“ 2ϵH1
fi

sinpωfit{2q

ωfi

e´ipEf`Eiqt{2ℏ . (74)
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The transition probability is finally

Pfi ” | ⟨f | ψptq⟩ |2 “ |af ptq|2 “ 4pϵH1
fiq

2 sin2pωfit{2q

pℏωfiq
2

. (75)

Transition to the continuum
In the situation where Ef is in a continuum of energies (scattering state),
the result (75) is replaced by

Pfi Ñ P “ 4

ż 8

´8

dEf ρpEf qpϵH1
fiq

2 sin2pωt{2q

pℏωq2
, (76)

where ρpEf q denotes the density of energy states. In realistic situations, ρ
is a smooth function of the energy, and the integrand is thus sharply peaked
around the value ω “ 0 (or Ef “ Ei), such that

P »
2t

ℏ
ρpEiqpϵH1

fiq
2

ż 8

´8

dx
sin2pxq

x2
(77)

“
2πt

ℏ
ρpEiqpϵH1

fiq
2 .

The transition rate is therefore constant, which is Fermi’s Golden Rule:

dP

dt
“

2π

ℏ
ρpEiqpϵH1

fiq
2 (78)

3 Relativistic Quantum Mechanics

In this section we set c “ ℏ “ 1

3.1 Klein-Gordon equation

The Schrödinger equation is obtained by quantisation of the non-relativistic
dispersion relation E “ p2{p2mq, based on the replacements (49). Making
the same replacements in the relativistic dispersion relation E2 “ m2 ` p2

leads to the Klein-Gordon equation

ˆ

B2

Bt2
´ ∇2 ` m2

˙

ϕpxq “ 0 , (79)
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where ϕ is a real scalar field and x is a collective notation for the coordinates
xµ. By definition, a scalar field is invariant under a change of inertial frame:
ϕ1px1q “ ϕpxq and

ˆ

B2

Bt12
´ ∇12 ` m2

˙

ϕ1px1q “ 0 , (80)

where primes denote another inertial frame. The action for the real scalar
field, for which the variational principle leads to the equation of motion (79),
is

SKG “
1

2

ż

d4x
`

BµϕBµϕ ´ m2ϕ2
˘

. (81)

Indeed, the functional derivative of the action leads to

δSKG

δϕpxq
“

ż

d4y
`

BµϕBµδp4qpx ´ yq ´ m2ϕδp4qpx ´ yq
˘

“ ´

ż

d4y
`

BµBµϕ ` m2ϕ
˘

δp4qpx ´ yq

“ ´
`

l ` m2
˘

ϕpxq , (82)

where surface terms are omitted. The action for a free complex scalar field
is

S̃KG “

ż

d4x
`

BµϕBµϕ‹ ´ m2ϕϕ‹
˘

, (83)

and the equation of motion for ϕ is obtained as

δS̃KG

δϕ‹
“ 0 . (84)

3.2 Dirac equation

The relativistic dispersion relation (7) has two solutions: E “ ˘
a

m2 ` p2,
that Dirac interpreted as the energies of the particle and the antiparti-
cle. Dirac then looked for the equation of motion which corresponds to
the “square root” dispersion relation, and thus which involves differential
operators D˘ such that

D`D´ “ l ` m2 . (85)

The simplest solution is

D˘ “ ˘iγµBµ ´m , (86)
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where the 4-vector γµ must satisfies tγµ, γνu ” γµγν ` γνγµ “ 2ηµν , in order
to obtain

γµγνBµBν “
1

2
pγµγν ` γνγµqBµBν “ BµBµ “ l . (87)

Since γµ do not commute, they must be matrices, such that the wave func-
tion ψ for which the equations of motion are D˘ψ “ 0 must have several
components. In 4-dimensional space time, a massive fermion has 4 compo-
nents and represents a 1/2-spin particle. It contains 4 degrees of freedom: 2
spin states for the particle and 2 spin states for the antiparticle. The Dirac
equation is then

pi{B ´ mqψ “ 0 where {B ” γµBµ . (88)

3.3 Properties of the gamma matrices

We list here few fundamental properties of the gamma matrices, which
are necessary to calculate a Feynman graph involving fermions.

tγµ, γνu “ 2ηµν 1 (89)

γµ: “ γ0γµγ0

tr pγµq “ 0

tr pγµγνq “ 4ηµν ,

where 1 is the unit matrix with respect to Dirac indices.
Also, one defines the matrix γ5 ” iγ0γ1γ2γ3, which anticommutes with all
the other ones: tγ5, γµu “ 0, and which allows to define the projectors on
helicity states (projection of spin on momentum)

ψR ” PRψ , with PR ”
1

2
p1 ` γ5qψ (90)

ψL ” PLψ , with PL ”
1

2
p1 ´ γ5qψ .

Since PR, PL are projectors, they satisfy PR ` PL “ 1 and PRPL “ 0.

3.4 Conserved current and fermionic action

The Dirac equation (88) has Hermitian conjugate

iBµψ
:γ0γµγ0 `mψ: “ 0 . (91)
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Given that pγ0q2 “ 1, a multiplication by γ0 on the right gives

iBµψγ
µ ` mψ “ 0 , (92)

where ψ ” ψ:γ0. Multiplying eq.(88) by ψ on the left, and multiplying
eq.(92) by ψ on the right leads to

ψiBµγ
µψ “ mψψ (93)

iBµψγ
µψ “ ´mψψ ,

such that
Bµpψγµψq “ 0 . (94)

This is the continuity equation (28) for the conservation of the density of
probability 4-current jµ “ pρ, j⃗q, with

ρ “ ψγ0ψ “ ψ:ψ (95)

j⃗ “ ψγ⃗ψ .

The Dirac equation (88) can be obtained from the variational principle
δSD{δψ “ 0, with

SD “

ż

d4x ψpi{B ´ mqψ , (96)

and the equation of motion (92) can be obtained from the variational prin-
ciple δSD{δψ “ 0:

δSD

δψpxq
“

ż

d4yp´qψ piγµBµ ´ mq δp4qpx ´ yq (97)

“

ż

d4y
`

iBµψγ
µ ` mψ

˘

δp4qpx ´ yq

“ iBµψγ
µ ` mψ ,

where the sign p´q arises from the anticommutation of ψ and ψ.

3.5 Towards Quantum Field Theory

The Klein-Gordon and Dirac equations describe free fields, with a con-
stant number of particles, and which can thus be described by Quantum
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Mechanics. If one introduces interactions, then it is possible to create or
annihilate particles, because of the equivalence between mass and energy.
One then needs a formalism which allows for an infinite number of particles,
which is QFT, and the space of all the possible states is the Fock space.

As a toy model for the Standard Model, let us consider the following
fields: (i) an Abelian vector Aµ with field strength Fµν ; (ii) a fermion ψ
coupled to Aµ, with charge e; (iii) a complex scalar ϕ coupled to Aµ, with
charge g; (iv) a real scalar φ coupled to the fermion with Yukawa coupling
y. The Lagrangian reads

L “ ´
1

4
FµνF

µν ` ψ
`

i{B ´ e {A ´ m
˘

ψ (98)

`pBµ ` igAµqϕpBµ ´ igAµqϕ‹

`
1

2
BµφBµφ ´ V pφ, ϕq ´ yφψψ .

where V pφ, ϕq is the potential, including the scalar mass terms and inter-
actions. This Lagrangian is invariant under the simultaneous set of gauge
transformations

Aµ Ñ Aµ ´ BµΛ (99)

ψ Ñ eieΛψ and ψ Ñ e´ieΛψ

ϕ Ñ eigΛϕ and ϕ‹ Ñ e´igΛϕ‹

φ Ñ φ .

Gauge invariance is important to respect, since it implies the conservation of
electric charge for example, when Aµ is the electromagnetic field. We note
that gauge invariance is automatically respected if one performs the following
minimal substitution in the free Lagrangian

Bµ Ñ Bµ ´ ieAµ for the fermion field (100)

Bµ Ñ Bµ ´ igAµ for the complex scalar field ,

in order to include interactions.
One can see that the Lagrangian (98) does not couple the real scalar φ

to the photon Aµ, or the complex scalar ϕ to the fermion ψ. But all theses
fields are actually indirectly coupled, through the exchange of a gauge field
of through a fermion loop, as can be read from the different interactions in
the Lagrangian:
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• Fermion/fermion scattering
A full line represents the fermion propagator, the arrow is the cur-
rent density, the wavy line is the photon propagator, the 3-leg vertices
arise from the cubic coupling ψ {Aψ. Because of the two vertices, each
proportional to e, this process is proportional to e2.

• Fermion/charged scalar scattering
A dashed line represents the charged scalar propagator, the 3-leg ver-
tex photon-scalar arises from the derivative cubic interaction ϕAµBµϕ‹.
This scattering process is proportional to eg

• Neutral scalar/photon scattering
A doted line represents the real scalar (neutral). This one-loop graph
corresponds to a quantum correction, proportional to y2e2.
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• Neutral scalar annihilation into a photon
This one-loop quantum correction is proportional to y2e

19


