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MEMBER STATES

Austria 87
Belgium 171
Bulgaria 53
Czech Republic 247
Denmark 62
Finland 93
France 891
Germany 1243
Greece 142
Hungary 61

Israel 64 e
Italy 1474 |
Netherlands 172

Norway 97

Poland 229

Portugal 105

Slovakia 70
Spain 322
Sweden 98
Switzerland 449
United Kingdom

OTHERS China Iceland 3 Montenegro 1 Taiwan

Colombia 15 Indonesia 8 Morocco 8 Thailand 13

OBSERVERS Argentina 22 Costa Rica 1 Iran 29 Nepal 1 TFYROM 2

India 182 | STATES IN ACCESSION Armenia 17 Croatia 22 Ireland 7 New Zealand 7 Ukraine 29

Japan 261 | TO MEMBERSHIP Australia 37 Cuba 3 Jordan 2 Pakistan 26 Venezuela 1
Russia 917 WP omania 97 Azerbaijan 3 Cyprus 12 Korea 130 Peru ) 3
Serbia 35 Belarus 26 Egypt 22 Lithuania 12 Saudi Arabia 1
Brazil 138 Estonia 17 Madagascar 3 Singapore 1

1 32 Canada 165 Georgia 14 Malaysia 8 Slovenia 21 1177

Chile 11 Hong Kong 11 Mexico 56 South Africa 42

Figure 2. Countries of origin of CERN’s visiting scientists (Users) by location of their home
institute (January 2015)
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Goal

Describe the fundamental concepts of statistics for HEP

Explore these concepts with Root-Macros for hands-on experience
Using the random number generator ... seeing some sampling theory ....
Statistics : quantify knowledge and uncertainty : communicate results

How to interpret the plot below ?

= I L T T T T =) T T T T T
g ATLAS Preliminary 2011 +2012 Data a ATLAS Preliminary 2011 + 2012 Data
& 10 E_ —— Obs. V\s=7TeV: det =4.6-4.81fb" —E § —— Obs. \s=7TeV: ILdt -46-481"
5 - D Exp. Vs=8TeV: [Ldt=5.8591b" - - -~ Exp. {s=8TeV: [Ldt=5859 "
= L 1o ]
-E - [J+20 .
- i il
(@)
o\o 1 &t =
0 - .
@ T .
107 » E
2 CLs Limits ] ’ ’
100 200 300 400 500 600 - 200 360 4(')0 5(')0 660

My [GeV] m, [GeV]
Appreciate there is a lot more for you/us to learn about statistical techniques
In particular concerning the treatment of systematics
Apply these results to Discovery and Exclusion in ATLAS
So be patient and take some time to understand the techniques step by step...
ASP2016 : Stats for HEP 3



Another example

Announced December 2015 : “excess” Peak in the diphoton reconstructed mass spectrum
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Further Reading (lT//

By physicists, for physicists
G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.
R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley, 1989;
F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006;
- W.T. Eadie et al., North-Holland, 1971 (1st ed., hard to find);
S.Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York, 1998.
L.Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986.

e , Statistics e STATISTICAL
Statistical Methods in : o) Sca I.i\ ;: { : })C 2 DATA
R e ANALYSIS

E
fif Classical
e Inference
i
=

My favorite statistics book by a statistician:

Stuart, Ord, Arnold. “Kendall's Advanced Theory of Statistics” Vol. 2A Classical Inference &
the Linear Model.

Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5,2009
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Disclaimer :
What this lecture is not going to be about...

- It will not be a lecture on the fundamental theory of statistics

- Multivariate techniques
- Bayesian confidence intervals
- Goodness of fit theory

- In depth discussion of systematics and their treatment

- Bayesian vs. Frequentist diatribe
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Why are Statistics so Important in Particle Physics ?

Because we need to give quantitative statements about processes that
have some inherent randomness...

... May this randomness be of measurement nature or quantum ...

How did it all start ?

Liber de ludo aleae . f F
\
To study games of chance ! %

G. Cardano (1501-1576)

And many others to follow (Pascal, Fermat, etc.. )

“La theorie des probabilités n’est, au fond,
que le bon sens reduit en calcul”

“The theory of probabilities is at ultimately
nothing more than common sense reduced to

Iculation”
Ao b 5 Laplace (1749-1824)
ASP2016 : Stats for HEP 8




From the very innocuous seeming assumption ....
“There is a random process characterised by a constant average event rate, u.”

.. many significant and fundamental results follow — perhaps the prime
example of the dramatic yield of results from an assumption in all physics.

The random deviate represented by the waiting time between such events
may be shown to be drawn from the exponential probability density

distribution. P, (t; M) _ Me_udt .“

The random deviate represented by the number of such events within
a time bin 7T is drawn from the Binomial Distribution, well
approximated by the Poisson Distribution.

TT T L L L L LN LB L LB R L TTT T T TTT

_. n" &
pp(msn)=—e - 44 |
n! = —

Where the expectation value 77 =1

and std. deviation g = \/_,.,\/_
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What is a Statistical Error ?

Imagine | have a billion white ©and blue @ golf balls

| decide to throw one million of them into a well and with an admixture of 15 out of
one hundred blue ones...

| then know PRECISELY the
probability that if you pick one at
RANDOM, it will be blue...

p=15%

You of course don’t know this number
and you want to measure it...

All you have is a bucket...

Which contains exactly 300 balls

ASP2016 : Stats for HEP 10



This is approximately how the well looks like inside...
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You throw the bucket and pull out the following outcome

Aha! You have a measurement!

OOOO.OOO n =300 The probability is...

PP k=36 p=12%

... But how preciseis it ?

I
ASP2016 - Stats for HEP 1 Remember you are not supposed to know the true value!



The difference between a measurement and the true value is the Statistical Error

Precise definition of statistical error

In this case it would be 3% absolute (20% relative), but since you don’t know the true
value you don’t know at all what your statistical error really is !

Of course had you thrown your bucket on a different spot, you would have probably
had a different measurement and the statistical error would be different...

What you want to know is your measurement error, or what the average statistical
variation of your measurement is...

This can be done provided that you know the law of probability governing the possible
outcomes of your experiment ... (and the true value of p, but assume that 12% is a close enough)

You want to know what the probability for an outcome of & golf balls to be blue is.
For one specific outcome the probability is:

P=p‘x(-p)*

What are all possible combination of outcomes of k blue balls out of n?
ASP2016 : Stats for HEP 12



What are all possible combination of outcomes of & blue balls out of n?

_{ For the first blue ball there are n choices, once this choice is made the second ball
has n-1 choices,... the &" ball has (n-k) choices.

In a simple case... n=10 and k=3 this can be seen as:

LN N HONONONONONONG

B

T~~~

TH& séitbadhins bha £ otibese s
So the number of combinationsis: n x (n—-1) x (n-2)
n!
Inthe generalcase: nx(n-1)x(n-2)x(n-3)..x(n-k+1) = Y
n— .
—— Because we do not care about the order in which we have picked the balls

Ol N NONON NONOHNON® ... avoid the double counting!

1 2 3 )

1 3 2

§ 1 2 ' Each configuration is counted 6 times

2 3 1

3 2 1/
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This number corresponds in fact to the number of combinations of £ blue balls out of &
balls and therefore :

kx(k=1)x(k=2)x(k=3)..x1 =k
Aka the number of re-arrangements of the & blue balls.

In order to account for each combination only once you just need to divide by the
number of re-arrangements of the & blue balls.

So the number of combinations of £ elements among n is given by :

¢ n!

" (= k)]

The probability to pick & blue balls among », given a probability P that the a ball is
blue is thus :

P=Cixp‘x1-p)"*

This is an absolutely fundamental formula in probability and statistics!
It is the so called Binomial Probability!

ASP2016 : Stats for HEP 14



The Binomial Probability
Binomial coefficients were known since more than a thousand years...

... they were also the foundation of modern probability theory!

W 2 #F X 3 &

B. Pascal (1623-1662) The Pascal Triangle (~1000 AD)
ASP2016 : Stats for HEP 15



So what is the precision of your measurement ?

A good measure of the precision (not the accuracy) is the Root Mean Square Deviation
(square root of the variance) of possible outcomes of the measurement.

You will compute it yourself. To do so you need two steps...
(see next slide for the full derivation)

Step 1 : Compute the mean value of the binomial probability
u=n~P

Step 2 : Compute the variance of the binomial probability
Variance = nP(1- P)

So now you know the variance of your distribution for a given probability P...

In your case : P=12% Assuming P is close enough to the true value, the precision is :

RMSD = A/[nP(1- P) =5.6

The relative precision ~15% is rather poor and the accuracy questionable! (Remember, your
statistical error is 45 - 36 = 9, although you are not supposed to know it !)
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Step 1 : Compute mean value

Step 2 : Compute variance
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But wait. ..
Now you are curious to see what happens if you repeat your measurement!
You have noticed that the average binomial probability is the expected value!

Intuitively you will therefore try to repeat and average your measurements...

You will do it 50,000 times and meticulously plot the number of counts. This is what you get :

IIIIIIIIIIIIIIIIIIIIIIlll!lllll]ll

2 F N T
2 3000; A ... . NthFOWS = 50000
'E E ™ .Q E
25001 . . =
20008 . . E The average number of blue
1500} . . = balls in 50,000 throws :
1000 . : E (Numbery,, ) = 44.98
500[- S’ R =
STV S ST ST <P>=14.99%
0 10 20 30 |40 50 60 70 _ 80
Number of Blue Balls

Your initial measurement (36) ! See Binomial.C

Now you decide that your measurement is the average, what is its precision ?
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What is the variance of the average ?

Let’s start from one straightforward and general property of the Variance for two random
variables X'and Y:

Var(aX +bY) = ((aX +bY - (aX +bY))*) = <[a(X — (X)) +b(Y - <Y>)]2>
= a’Var(X) + b*Var(Y) + 2abCov(X.Y)

Where the covarianceis: Cov(X,Y) = <(X — <X>)(Y - <Y>)>

n

EaiXi

i=0

= Ea?Var(Xi) + EaiajCav(Xi,Xj)

i=0 O<i< j=n

This formula generalizes to... Var

Therefore assuming that each of the bucket throws measurement N, _ is independent from
the previous one, the mean value being a simple sum of the measurements divided by the
number of throws :

1 NThrows ‘
<N umberBlue> = N Blue
Throws k=1
The ensemble variance then is :
N N
R 1 Throws 1 Throws 1 nP 1 _ P
G* =Var X |= Var(X,) = N s Var (X;) = q-7
N i N2 i 2 Throws i N
Throws k=1 Throws k=1 Throws Throws
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The precision being given by the Root Mean Square Deviation -

np(l - P) _ RMSDIndividual
NT/’U’OWS V N Throws

Very interesting behavior : Although you do not know the true value p, you see that the
average is converging towards it with increasing precision!

=0.01%

RMSD = \/

§ 48 :'- l L ] I 1 L] ] 1 l L ] L L I ] 1 L] ] I L L] ] 1 I—_'
g e 1 Iy N g | |
m - Tmrlfnﬂ&in—;;;—T«,-:;;zﬁééﬁrntﬁrhﬁﬁéééé-~ <«—— The line here is the true value !
w  aal ldUHIppHITIIIRRIIIE -
o - I[l ]
S af -
- - _
S - -
(O] B _
) - -
S a8 7
<>E = -
36 <« - Your initial measurement
-l 1 A L I 1 A 1 1 l L 1 1 ' l 1 1 A 1 l 1 A 1 1 l
0 10 20 30 40 50

See Binomial.C
Number of throws averaged (x10)

This is an illustration of the LAW of LARGE NUMBERS ! Extremely important, intuitive but
not trivial to demonstrate...
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What is the meaning of our first measurement v, = 36 ?

Now that we know (after 50,000 throws) to a high precision that the probability of a
blue ball is very close to 15%.

The frequency of an outcome as low as 12% is ~10% (not so unlikely!)

What difference would it make if you had known true value ?

Frequency at which the measurement is within the precision as estimated from the
truth :

|Pmeas - p| < \/np(l — p) = 70% (of the cases the measurement is
within the true statistical RMSD)

Frequency at which the true value is within the precision as estimated from the
measurement :

|Pmeas - p| = \/ nP, (-P, ) = 67% ofthe cases the true value is
within the measured error)

See Coverage.C
The true value coverage is similar in the two cases, keep these values in mind...

Here all results are derived from a simulation in terms of frequencies...

Computing Binomial probabilities with large numbers of N can be quite difficult !
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The Gaussian or Normal Probability

|s there a way to simplify the computation ? Not so trivial to compute 300! directly...

A very nice approximation of the Binomial Probability can be achieved using
Stirling’s Formula !

n!z’\/zﬂ,’n(ﬁ) Inn!=nlnn-n+3In2xan
e

10©

10° }

103 F
102 }+
10" +

10° b

107!

In x!

XInx-x

10°

10!

10>
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Formula is valid for large values of n...

C,p'(1-p"" ~ 20

0 =+/np(1- p)

(See derivation in the next slide)



Binomial convergence towards Normal
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Validity of the Normal Convergence (Approximation)

Does the approximation apply to our bucket experiment (n=300 and p=15%) ?

See NormalConvergence.C
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1 I L} L\l T ) l L] L} T T I T T L] L] I Al Al T T l L] L] 1 Ll

Throws

3000

2500

2000

1500

1000

500

llllllllllll[llllllllllllllllllll-l-

o—illllllIIIIIIIIIIIIIIIIIIIIIIIIIIIT

I 4 1 I 1 1 1 1 1 1 Il l 1 1 1 1 l
20 30 40 50 60 70
Number of Blue Balls

C. F. Gauss (1777-1855)
Not bad (although not perfect) !

In practice you can use the normal law when approximately n>30 and np>5
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What is so “Normal” About the Gaussian?
The Central Limit Theorem... ... at Work !

When averaging various independent random variables (and identically
distributed) the distribution of the average converges towards a Gaussian

distribution
See CLT.C
4500:1_1 T I T T ] T I L l L l T T l T T l T™rr T I T™r T T l T ..1__.
4000}~ =
3500} _ 30—
T o1 1
2500} - RMS = X——
2000} E V12 /B0
1500 =
1000f- =
500k - At N=10 an excellent agreement with a
bt S T gaussian distribution is observed
o 01 02 03 04 05 06 07 08 09 1

The CLT is one of the main reasons for the great success of the Gaussian law...

On the one hand the CLT is very powerful to describe all those phenomena that result from the
superposition of various other phenomena... but on the other hand it is just a limit...
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The Notion of Standard Error

1 _(X_M)Z

2

GPDF(-xal/L’G) = 5 e
2o

Starting from the gaussian PDF :

Let’s give a first definition of a central confidence interval as the deviation from the
central value...

u+ao 1 _(X—M)2
P(ao) = f =e 20% dx
. u—ao N 27O
- Thenfor: -a=1:P(ac)=68.3%
° -a=2:P(ac) = 95.4%
S 34.1% 34.1% -a=3:P(aoc)=99.7 %
S See NormalCoverage.C

If you knew the true value of the “error” (o) then you could say that the in the gaussian limit
that the true value has 68.3% probability to be within the 1s, but in many practical examples
(such as the well) the true value of the error is not known...

ASP2016 : Stats for HEP 26



How does the Bucket Experiment Relate to Particle Physics?

The bucket experiment is the measurement of an abundance (blue balls)...

This is precisely what we call in particle physics cross sections...

... except that the bucket contains all collisions collected in an experiment so...

- We try to fill it as much as possible (N is very large and not constant!)

- The processes we are looking for are very rare (p is very small)

The very large N makes it difficult to compute the binomial probability...
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The Poisson Probability

In the large » and small p limit and assuming that np = u is finite you can show

(see next slide) that ...
C* k(l _ )n-k ~ Me-mm — ‘“_ke-ﬂ
PP K K

Much simpler formulation! In practice you can use the normal law when approximately »>30 and np<5

See PoissonConvergence.C
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POISSON, %"M/ﬂ/ C
e 4

S. D. Poisson (1781-1840)

Interesting to note that Poisson

developed his theory trying not to solve a
game of chance problem but a question

of Social Science !
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Poisson Intervals (or Errors)

Now how will you define a central confidence interval in a non symmetric case ?

0.40 l
0.35 7
0.30f |
< 0.25F |

c e ©

> > >
|

—_— s

2 0.20}
5

. én).
0.15 | o |

I f |l ' .“'. 1 {.:}_(:;
0.10 i “'. : e~ Q,

N -' Q Equiprobable boundaries
~0:05F 7 T -
0.00-= '

 68%

The integration needs to start from the most probable value downwards...

Here is our first encounter with the necessity of an ordering !
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What have we learned ?

...and a few by-products...

1.- Repeating measurements allows to converge towards the true value of an
observable more and more precisely ...

But never reach it with infinite precision !!!

Even more so accounting for systematics...
(what if the balls do not have an homogeneous distribution ?)

2.- Binomial variance is also useful to compute the so-called binomial error, mostly

for efficiencies :
used for efficiencies . _0, _ |el-e)  p=np
¢ N N For an efficiency you must consider n fixed !

3.- We came across a very important formula in the previous slides

n

EaiXi

i=0

= Ea?Var(Xi) + EaiajCav(Xi,Xj)

i=0 O=i< j=n

Var

That generalizes (with a simple Taylor expansion) to...

Var(f(xl,...,xn))=g(%)zvar(xi)+ D %%cov(xi,xj)

O=i< j=n
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Likelihood

Unfortunately in High Energy physics experiments, events (balls) don’t come in
single colors (white or blue) ... Their properties are not as distinct !

For instance take this simple event :

Could be many things ... Y 8 Y
N
] H Let alone that they can be
Higgs ? L. Background ? indistinguishable (quantum
interference)
@ O
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How can we distinguish between the two ?
Very vast question, let’s first start with how to measure their properties

(Which is also a very vast question!)

One clear distinctive feature is that the signal is a narrow mass resonance, while
the background is a continuum !

—e— Toy sample (1 fb ) ]
commonly used tools is the

maximum likelihood fit...

>400_llllllllllllll'llIllllllllllllllll'llllllllllllll_l

&  FATLAS Preliminary Bl signal x10 -

2350 (Simulation) H-7y (m, =120 GeV)7

9300 1fo'\s =7 TeV [ ]yv (Born & Brem) E

s l ] vy (Box) . o

NOTh t 0 v-jet E To measure properties in

o .. -

& [ Di- jet . general (a.k.a. parameter
Drell Y —] . .

220 - Dk Yan ] estimation) among the most

fbo 105 110 115 120 125 130 135 140 145 150
M,, [GeV]
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What is a Likelihood ?

A simple way of defining a Likelihood is a Probability Density Function (PDF) which
depends on a certain number of parameters...

Simplistic definition is a function with integral equal to 1...

Let’s return to the well experiment but under a different angle this time...

(but this applies to any parameter estimate)

007k o~ 4 Under certain hypothesis :
o.osE— E - Gaussian centered at 45 (p=15%)

- . - Width equal to error for 1 bucket (300 balls)
0.05[ =

s . 0 =+/np(1-p)

004 1 - 5~62blue balls)
0.03}
0.02f- (SR W «——— Here is its probability !
0.01F E or Likelihood

o200 Fa0 50 80 70

T m = number of blue balls Not so Ilkely I

Here is your first measurement (36) !
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N
What happens when we throw more buckets ? L(w) = Hf (n.)

u l
Then the probability of each bucket can be multiplied! i=1

See Fit.C

’-l LA ] L T ] LR l AL I L |1 l LA B ] T l LI l T L l T T l: 100 :l' I L] T ] T T T 1] I 1] 1 1 T l T T T 1] I L] .I T L l T T L Ll l E

350 = s0f- . ) E

300} N 80F ’ . 3

250} = 70F . : E

g ; 60 o ’ =

2001 E 50F- . . =

150 = aof- " . N

100F = S0F- . N E

i : 20f- o o E

50 [— ] E . .. E

: : 10F O E

" :l l L L 1 1 ] L L L L l 'S L L l..y.l L L [ L L A 1 I " L ' L l ;

% 70 0435 44 44.5 45 45.5 46 46.5
m = number of blue balls u = estimate of the mean

This probability will soon be very very small (O(0.1))'%0--1t is easier to handle its log :
In(L(w) = Y In(f,(1,))
i=1

Then to estimate a parameter one just has to maximize this function of the parameter
u (or minimize -2InL you will see why in a slide)...

See how the accuracy translates in the sharpness of the minimum!
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In our simple (but not unusual) case we can see that :

(m u)

—2In(L(u)) = —ZEln(fM (n,)) = —ZEIH(ﬁe ) = E (m M) + cste

— 7
~—

2
This is also called X

There is an exact equivalence between maximizing the Likelihood or minimizing
the %2 (Least Squares Method) in the case of a gaussian PDF

4__1 ! .' L L L Al '__
sk See Fit.C . E You can also see that the error on
sE . . 3 the measured value will be given by
25§ . . : a variation of -2 In L of one unit :
°F . S E A(=2In(L(w))) =1
15F % E
N —— A S 3 _
: ", : =44.95+0.06
0-5;_ | ..‘. .o. | —; \ )
oé.. ----------------------- :'-‘h....o-!'-.-. ----------------------- q..g o
I B I B N I A I - Which is precisely ———
448 4485 449 4495 45 4505 451 An
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“Proof” : Estimation of variance of model parameters (errors)

n 2 01
s= Y l:yi—f(xi;aj)} v | -

i=1 g;

The likelihood function -
The mean is estimated by a model
a; are model parameters

828 -1

2 ¢

1
o’=

If we expand S in Taylor series about the minimum

1 &S

S(0) = S(6*)+— 60— 6%)?
(8) ( )+2 a92( )

=S(9*)+L2(0~9*)2.
g

At the point 8 = 6* + g, we thus find that
S(0*+a)=S(6%)+1.
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£ cov(l,2) cov(l,3) )

o3

1 2
V=20

cov(2,3) > 32.8 '
a; aj

a3

_)

The errors in the parameters are estimated by
the diagonal elements of the covariance matrix,
which for linear least squares is given by the
inverse of the double partial derivative.

In 1d .... simple case

A robust procedure varies the twice
log likelihood function about the
minimum 6* by 1 to find the root of the
variance in the model parameter.

For higher dimensionality, the tested
model parameter is stepped while the
others are varied to maintain the
minimum condition.



What have we learned?

How to perform an unbinned likelihood fit :

For n=1000 the fit yields
=4491%0.19

) S e R L IS I | R IS IS R
40—

30|

{1 Using a simple binned fit (as shown here
1  with 100 bins) in the same data yields :

- i =44.81+0.20
| LSM between the PDF and the bin value

10

=70

This can of course be applied to any parameter estimation, as for
instance the di-photon reconstructed mass !
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More on the 2

The y? value is itself a statistic (random variable).

One can repeat the measurement, (collection of the data), and one would get a
different data set, and then calculate a different x2

This means that the value of x2 belongs to a distribution.

As we can write down a closed mathematical expression for the

it follows that the 2 distribution is amenable to analysis, and can be calculated as:

N 1 _(nz,-—;;)2 (u /2)(v/2)—1 o2
2
X =-2 hl( e ¢ ) P u)=
E V270 () 2T (v/2)

<%>=vV

We have used u = 2 to avoid confusion with the exponent.
I'(v/2) represents the gamma function and v the degrees of freedom (see later).

1.0 1.0

0.8 0.8
0.6 o6k
0.4

0.4

0.2
- 0.2

0.0 :
0 2 4 6 8 0.0
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Hypothesis Testing

How to set limits or claim discovery ?

Hypothesis Testing in HEP Boils Down to One Question :

Is there a Signal ?
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Exclusion, Observation or Discovery ?

The goal here is to assess quantitatively the compatibility of our observation with two
hypotheses :

No-Signal (H,) and presence of Signal (H,)...

We need to be able to have estimate whether an experiment is more Signal-like or
Background-Like.

>400_ lllllll IIIIII llllllll l lllllllllll IIIIIIIII-

3 -ATLAS PreI|m|nary I signal x10 -

2350 (Simulation) H-yy (m =120 GeV)—

9300 1fo'\s = 7 TeV vy (Born & Brem) -

- | ] vy (Box)

050 t 2 v-jet , :

8 B Di- jet Let’'s again take the example
S

5200

Z

gg—~> H-> yy analysis

—s— Toy sample (1 fo }
at LHC

B Drell Yan —f of the
- (in ATLAS)

‘pOO 105 110 115 120 125 130 135 140 145 150

M,, [GeV]
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The F-Test as a test statistic | «atapoint x.1)

Model dependent on
parameters (now a gaussian)

We can think of the %2 defined above equivalently as

. ? Al : 2
X2 =EM+CstezE(yi y(x;;A,u,s)
i=1 ol

5 > + cste,

O O.
C S ——— | Errorin data point,

So ... consider the case where the test statistic is defined as assumed Gaussian
but Poisson in this

lz(ﬁ(‘xi;h7é)_yi)2 example.
CXH X)) vy, o>

X (Hylx) /v, 1 E(fz(xi;@)—yi)z
v, o’

With reference to the High Energy Physics example, in H,, & is the height of a
(gaussian)peak (of assumed known width) on a smooth background characterised by
a function of parameters 6, and in H,, there is only the smooth background.

The ratio of two x? distributions will be well defined because the %? is well defined.
The ratio is the F statistic, which itself belongs to a distribution.

Vv A%
Flv,v,)=1 2 1L
OF 1vv)=1 ., (2 2)

Vs +V2F

Where [ is the incomplete beta function.
Note : We are asking if the two distributions (with and without the peak) are different.

ASP2016 : Stats for HEP 42



v, and v, are the degrees of freedom for H, and H, respectively.
H, is described by f{x,h,0) which has »n data points and m free parameters.
Then, v, = n —m. H, will have one more degree of freedom than H,.

o _| Q
N h
F PDF
®© F CDF
0 | o | -
— di=1, d2=1 © _ =
o | — d1=2, d2=1 o /
- d1=5, d2=2 < _ —_— {1 do
d1=100, d2-1 = — e
el d1=100, d2=100 N d1=5 o2
o S
\\ R d1=100, d2=1
g — e — 8 — d1=100, d2=100
I I | I I I I [ I I I I
0 1 2 3 4 5 0 1 2 3 4 5

FCL

A confidence limit for the rejection (acceptance) of H,, the null hypothesis, that there is
no peak, corresponds to discovery (exclusion).

In this analysis, the confidence limit is set at CL%, and the F distribution is integrated
to the the F-value of F;, . Based on the cumulate F distribution to the point F , we
are CL% certain that a measured F-value larger than F_ is not statistically acceptable
as being consistent with H,,.
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This analysis is didactic and illustrative, but it suffers from several drawbacks. It does
not respect the “look elsewhere” effect, it assumes a normal distribution for the data, it

cannot easily take into account the full systematics of the measurement, amongst
other issues.

The “look elsewhere” effect considers that we do not know where the peak should be.
The estimated probability of the peak must be diluted by the number of ways that it

could have been manifested (roughly the factor of the measurement interval divided
by the peak width).

—— Toy sample (1 i } constructing the test statistic

>400_ llllllll I LI Il llllllll l llllllllllll I UL} I LI
S F | ATLAS Prellmmary I igra x10 -
H =120 GeV
2350¢  (Simulation) o, " To remove dependence on the
o 1fo'\s =7 TeV |:]y*{(Born&Brem) B ) _
£300 = 1 vy (Box) E Gaussian assumption, an
S + 0 - et E improvement is to develop toy
3 I Di- jet x Monte Carlo pseudo experiments to
§2oo Bl Orell Yan = get the PDFs for H, and H,, in

150
100 _ P(Hl | x)
50 P(H, | x)

1000 105 110 115 120 125 130 135 140 145 150
M,, [GeV]
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The Neyman-Pearson Lemma

The underlying concept in ordering experiments is really to quantify the compatibility
of the observation with the signal hypothesis (H1) ...

The problem of testing Hypotheses was studied in the 30’s by Jerzy Neyman and
Egon Pearson...

They have shown that the ratio of likelihoods of an observation under the two
hypotheses is the most powerful tool (or test-statistic or order parameter) to

_ P(H, | x)

F =
P(H, | x)
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The “y2” statistic for H, and H, can be calculated using the synthetic data.
The toy MC pseudo experiment can be repeated many times, billions of times, and the
PDF’s of the “y2” statistic for H#, and H, can be numerically assembled.

The same can be done for the statistic

F =

107
10°
10°

—
(=
f =N
| IIIIII|T| lIIII[II| I[IIIIII| T IIIIII IIIIIIIII

10

WMIIIII

I

|
10

o'|T|'|| IIIIIII]| T TTTITT

|
20

|
30

[ L
40

50

2*Iog(Lmale0) (MC simulation)
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P(H, |x)

P(H, | x)

The “look elsewhere” effect will be
accommodated if the peak
position is a free parameter, and it
could then range freely in the
position where the statistical
fluctuations allow it to be found
most favorably. Other effects
(width variations, systematics are
conceivably able to be included in
developing the PDF’s.

The process of setting a CL% and
determining a p-value from the
CDF can now follow based on
these distributions.



The Profile Likelihood

A very useful tool to compute limits, observation or discovery sensitivties and treat
systematics is the Profile Likelihood ... based on toy MC pseudo experiments.

Let's again take the example of the H—yy analysis at LHC (in ATLAS)

++ —s— Toy sample (1 fb ) ]
Assume a very simple model for

the signal :

400 T T T T T T T T T T

> - | | | | | - .

K 'ATLAS Prehmmary - s.gna| %10 . We have a simple model for the
2350 (Simulation) H-ry (m =120 GeV)—: baCkground :

D00 1oiNG=7Tey [ (@omaeram - .

- } [ v (Box) 1 b(m,0) = 0. "

8250 + L v-jet = 1

)] L i

2 + I Di- jet . _

5200 B Drell Yan E Relies only on two parameters

s(m,u) = us, x Gauss(m)

fo0 105 110 115 120 125 130 135 140 148 150 The Gaussian is centered at 120 GeV/c2 and
My, [GeV] a width of 1.4 GeV/c?
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The Profile Likelihood

The overall fit model is very simple :

L(w.0 1 data) = | | (s(m,.u) + b(m,.0))

IEdata

This model relies essentially only on two types of parameters :

- The signal strength parameter (u) It is essentially the signal normalization

- The nuisance parameters (0) Background description in the “side bands”

L(u,0(u) | data) Test of a given signal hypothesis w
L(u,0 | data) < Best fit of the data

A(u) =

Prescription similar to the Feldman Cousins

Usually work with the estimator : g, = —2In(A(u)) Because ...
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Wilks’ Theorem

Under the H, Signal hypothesis the PL is distributed as a x? with 1 d.o.f. !

(v.i.z a well know analytical function)

To estimate the overall statistical behavior, toy MC full experiments are simulated and fitted !

f(q“|H) med[qulu’]

f Yo | f(q )

/ p-value

Signal-plus-background
Toy experiments

D Background-likeliness >
Background only
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95% CL Limits

The observed 95% CL upper limit on u is obtained by varying u until the p value :

+00
f(qulu) med[qu"-l,] 1 —_ CLS+b = p = ff(qﬂ | M)qu = 5%
/ Yoa | Q) Gons
/ Analytically simple
p-value

This means in other words that if there
is a signal with strength u, the false
exclusion probability is 5%.

q

1

The 95% CL exclusion sensitivity is obtained by varying u until the p value :

p= ff(qu lwdq, =5%

med(qu 10)
%{_J
Background only experiments
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Exclusion Results

Performing this analysis for several mass hypotheses and using CL_,, the exclusion
has the same problem as the simple Poisson exclusion with background...

No-Signal (H,) and presence of Signal (H,)...
i.e. a signal of 0 can be excluded with a fluctuation of the background

J Al l A L) A T I T L L L4 I L . . . I Al T L AJ l T T L) Ll ' L L4 L L ' .

O 5L ATLAS Preliminary .
S - (Simulation) —— Modian .
g) . H-o s Median (no systemascs) 7]
= 20 :_ \E=71T9V [ ecian: o _:
g - 1fb D Median+ 26 -
= 15} -
- 2 -
T . -
< 10f- =
o i ]
(s0] 5 -
x . ]
© St =

0 P |

NP PP EPEPEPEPE RPN B B
110 115 120 125 130 135 140

M, [GeV]
We thus apply the (conservative) “modified frequentist” approach that requires :

CL =CL,,/CL,=5% where  CL,= [ f(q,10)dg,
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Observation and Discovery

The method is essentially the same, only the estimator changes...we now use q,

In this case the f(q,|0) will be distributed as a x? with 1 d.o.f. (Wilks’ theorem)

p= [ f(g,10)dg,

49 obs
- To claim an observation (3 o) : the conventional p-value required is 1.35 10-3

- To claim an observation (5 o) : the conventional p-value required is 2.87 107

This means in other words that in
absence of signal, the false discovery
probability is p.

p-value
/

| « a probability of 1 in 10 000 000 is almost

k— Zo—| X impossible to estimate »
Corresponds to the “one sided” convention

R. P. Feynman

(What do you care what other people think?)
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Conclusion

We went through an overview of the fundamental concepts of statistics for HEP

If possible take some time to play with the Root-Macros for hands-on experience

You should now be able to understand the following plot !

s ; ' ' —
7] - T T T T T
L ok A"'gf Prelminary 2011 +2012Dall ATLAS Preliminary 2011 + 2012 Data
= Ry = ; 19\\;: }tg: - :2;2 :; E — Ob. §=7TeV: [Ldt=46-481"
e [ mmsto o=t el =S ==+ Exp. /s=8TeV: |Lot=5.8-5.9 b
E - [J:20 7
I |
@)
X 1 Bl -
To) - 3
@t i
107 . E
El CLs Limits ] '
100 200 300 400 500 600 500 300 400 500 600

m, [GeV] m, [GeV]

There is a lot more for you/us to learn about statistical techniques
In particular concerning the treatment of systematics
So be patient and take some time to understand the techniques step by step...

... and follow Laplace’s advice about statistics !
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Additional
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Counting statistics for random events

e e At
The waiting time distribution between —
random events is exponentially ‘ ‘ ‘ ’ ‘ ’ ‘ ‘ ‘ ‘ ’
distributed. t
0.05
0.04 -
Events occur with a mean rate ;2. The probability for an g 003 P(t)dt=pe™dt
event in time dt is p.dt. = o
Consider probability function F),,(¢) for no event in time 0.014
t. Then -
Foo(t + dt) = F,,(t)(1 — pdt) o @ @ 8 100

solving this equation we get

C=1 by
normalisation

Foo(t) = Ce ™,

The probability density function P(#) of the random event
not occurring for a time ¢, and then occurring in the next
dt.

P(t)dt = F,,(t) pdt = pe " dt

Thus, the waiting times between random events are ex-
ponentially distributed.
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Counting statistics for random events
The number of random events per bin is Poisson distributed

[f there are on average i = p/At events in the tome inter-
val At, then the probability of an event in the subinterval

will be

p=n/N < 1.
The number of events 7 in the interval At then follows a n events
Binomial distribution ot

/

Decreasing the size of the subintervals, ie, N — oo and \
p — 0 but 7 = Np remains finite, we find that the Bi-

nomial distribution may be replaced by its approximation At=Ndt
for small p, the Poisson distribution.

n,,—T

n'e

P(n) =

n!

Consequently, the standard deviation of the number of

oc=Vn

So that the relative error in counting random events di-

minishes as ~ Ui

events per bin is
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