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Elements of Statistics 
Fundamental Concepts 

African School of Fundamental Physics and its Applications 
Kadono Marumi : original author 2010, Simon Connell 2012, Ketevi Assamagan 2014, Simon Connell 2016 
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Goal 
Describe the fundamental concepts of statistics for HEP   
Explore these concepts with Root-Macros for hands-on experience 
Using the random number generator … seeing some sampling theory …. 
Statistics : quantify knowledge and uncertainty : communicate results 

Appreciate there is a lot more for you/us to learn about statistical techniques 
 
Apply these results to Discovery and Exclusion in ATLAS 

In particular concerning the treatment of systematics 

So be patient and take some time to understand the techniques step by step… 
ASP2016 : Stats for HEP 3 

How to interpret the plot below ? 



Another example 

Announced December 2015 : “excess” Peak in the diphoton reconstructed mass spectrum 
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global p-value 2.0σ

not confirmed with additional 
data at ICHEP this summer 2016



5 ASP2016 : Stats for HEP 



ASP2016 : Stats for HEP 6 

  data 

background 

signal 



Disclaimer :  
What this lecture is not going to be about… 

- Bayesian confidence intervals 

- Goodness of fit theory 

- It will not be a lecture on the fundamental theory of statistics  

- Multivariate techniques 

- In depth discussion of systematics and their treatment 

- Bayesian vs. Frequentist diatribe 
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Why are Statistics so Important in Particle Physics ? 
Because we need to give quantitative statements about processes that 
have some inherent randomness… 

“La theorie des probabilités n’est, au fond, 
que le bon sens reduit en calcul” 

P. S. Laplace (1749-1824) 

Liber de ludo aleae

… May this randomness be of measurement nature or quantum … 

How did it all start ? 

G. Cardano (1501-1576) 

To study games of chance ! 

And many others to follow (Pascal, Fermat, etc.. ) 

“The theory of probabilities is at ultimately 
nothing more than common sense reduced to 
calculation” 
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Example ….. 
From the very innocuous seeming assumption ….  
 

“There is a random process characterised by a constant average event rate, µ.”

… many significant and fundamental results follow – perhaps the prime 
example of the dramatic yield of results from an assumption in all physics. 

The random deviate represented by the waiting time between such events 
may be shown to be drawn from the exponential probability density 
distribution. pE (t;µ) = µe

−µdt

The random deviate represented by the number of such events within 
a time bin T is drawn from the Binomial Distribution, well 
approximated by the Poisson Distribution. 

pP (n;n ) =
nn

n!
e−n

n = TµWhere the expectation value 

ASP2016 : Stats for HEP 9 

and std. deviation σ = n ≈ n

4± 4



What is a Statistical Error ? 
Imagine I have a billion white     and blue     golf balls   

I decide to throw one million of them into a well and with an admixture of  15 out of 
one hundred blue ones… 

€ 

p =15%

I then know PRECISELY the 
probability that if you pick one at 

RANDOM, it will be blue… 

You of course don’t know this number 
and you want to measure it…  

 Please 

Measure 

All you have is a bucket… 

Which contains exactly 300 balls 
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€ 

n = 300

€ 

k = 36

This is approximately how the well looks like inside… 

You throw the bucket and pull out the following outcome 

Aha! You have a measurement! 

p =12%
The probability is… 

… But how precise is it ? 
Remember you are not supposed to know the true value! 
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Of course had you thrown your bucket on a different spot, you would have probably 
had a different measurement and the statistical error would be different… 

The difference between a measurement and the true value is the Statistical Error 

In this case it would be 3% absolute (20% relative), but since you don’t know the true 
value you don’t know at all what your statistical error really is ! 

Precise definition of statistical error 

This can be done provided that you know the law of probability governing the possible 
outcomes of your experiment … 

What you want to know is your measurement error, or what  the average statistical 
variation of your measurement is…  

(and the true value of p, but assume that 12% is a close enough) 

You want to know what the probability for an outcome of k golf balls to be blue is. 

For one specific outcome the probability is: 

€ 

P = pk × (1− p)n−k

What are all possible combination of outcomes of k blue balls out of n? 
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What are all possible combination of outcomes of k blue balls out of n? 

For the first blue ball there are n choices, once this choice is made the second ball 
has n-1 choices,… the kth ball has (n-k) choices. 

In a simple case…  n=10 and k=3 this can be seen as:  

The first blue ball has n choices The second has n-1 choices The third has n-2 choices 

€ 

n

€ 

×  (n −1)

€ 

×  (n − 2)So the number of combinations is : 

In the general case :  

€ 

n × (n −1) × (n − 2) × (n − 3)...× (n − k +1)

€ 

=
n!

(n − k)!

Because we do not care about the order in which we have picked the balls 
… avoid the double counting! 

1    2                3 
1    3                2 
2    1                3 
3    1                2 
2    3                1 
3    2                1 

Each configuration is counted 6 times 

ASP2016 : Stats for HEP 13 



This number corresponds in fact to the number of combinations of k blue balls out of k 
balls and therefore : 

€ 

k × (k −1) × (k − 2) × (k − 3)...×1

€ 

= k!

In order to account for each combination only once you just need to divide by the 
number of re-arrangements of the k blue balls.  

Aka the number of re-arrangements of the k blue balls.  

So the number of combinations of k elements among n is given by : 

€ 

P = Cn
k × pk × (1− p)n−k€ 

Cn
k =

n!
k!(n − k)!

The probability to pick k blue balls among n, given a probability P that the a ball is 
blue is thus : 

This is an absolutely fundamental formula in probability and statistics!  
It is the so called Binomial Probability! 
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The Binomial Probability 
Binomial coefficients were known since more than a thousand years… 

… they were also the foundation of modern probability theory!  

The Pascal Triangle (~1000 AD) B. Pascal (1623-1662) 
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So what is the precision of your measurement ? 
A good measure of the precision (not the accuracy) is the Root Mean Square Deviation 
(square root of the variance) of possible outcomes of the measurement. 

You will compute it yourself. To do so you need two steps…  
(see next slide for the full derivation) 

So now you know the variance of your distribution for a given probability P… 

In your case : 

€ 

P =12%

€ 

RMSD = nP(1− P) = 5.6

Assuming P is close enough to the true value, the precision is : 

Step 1 : Compute the mean value of the binomial probability 

Step 2 : Compute the variance of the binomial probability 

€ 

µ = nP

€ 

Variance = nP(1− P)

The relative precision ~15% is rather poor and the accuracy questionable! (Remember, your 
statistical error is 45 - 36 = 9, although you are not  supposed to know it !) 
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Step 1 : Compute mean value Step 2 : Compute variance 
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But wait… 

You have noticed that the average binomial probability is the expected value!    

Your initial measurement (36) ! 

The average number of blue 
balls in 50,000 throws : 

€ 

NumberBlue = 44.98

€ 

P =14.99%

Now you decide that your measurement is the average, what is its precision ? 

Nthrows = 1 Nthrows = 2 Nthrows = 6 Nthrows = 11 Nthrows = 100 Nthrows = 1000 Nthrows = 10000 Nthrows = 50000 

You will do it 50,000 times and meticulously plot the number of counts. This is what you get : 

Intuitively you will therefore try to repeat and average your measurements… 

See Binomial.C 

Now you are curious to see what happens if you repeat your measurement! 
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What is the variance of the average ? 

€ 

Var aiXi
i= 0

n

∑
# 

$ 
% 

& 

' 
( = ai

2Var(Xi) + aia jCov(Xi,X j )
0≤ i< j≤n
∑

i= 0

n

∑
€ 

Cov(X,Y ) = (X − X )(Y − Y )

Let’s start from one straightforward and general property of the Variance for two random 
variables X and Y :  

€ 

Var aX + bY( ) = (aX + bY − aX + bY )2 = a(X − X ) + b(Y − Y )[ ]2

= a2Var(X) + b2Var(Y ) + 2abCov(X,Y )

Where the covariance is : 

This formula generalizes to… 

Therefore assuming that each of the bucket throws measurement           is independent from 
the previous one, the mean value being a simple sum of the measurements divided by the 
number of throws : 

NumberBlue =
1

NThrows

NBlue
k

k=1

NThrows

∑ € 

NBlue
k

The ensemble variance then is : 

σ̂ 2 =Var 1
NThrows

Xi
k=1

NThrows

∑
"

#
$

%

&
'=

1
NThrows
2 Var Xi( )

k=1

NThrows

∑ =
1

NThrows
2 NThrowsVar Xi( ) = nP(1−P)

NThrows
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The precision being given by the Root Mean Square Deviation : 

€ 

RMSD =
nP(1− P)
NThrows

=
RMSDIndividual

NThrows

= 0.01%

Very interesting behavior : Although you do not know the true value p, you see that the 
average is converging towards it with increasing precision! 

This is an illustration of the LAW of LARGE NUMBERS ! Extremely important, intuitive but 
not trivial to demonstrate… 

See Binomial.C 

The line here is the true value ! 

Your initial measurement 
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What is the meaning of our first measurement Nblue = 36 ? 

Now that we know (after 50,000 throws) to a high precision that the probability of a 
blue ball is very close to 15%. 

The frequency of an outcome as low as 12% is ~10% (not so unlikely!) 

What difference would it make if you had known true value ? 

Frequency at which the true value is within the precision as estimated from the 
measurement : 

Frequency at which the measurement is within the precision as estimated from the 
truth :  

€ 

Pmeas − p ≤ nPMeas(1− PMeas)
€ 

Pmeas − p ≤ np(1− p)

⇒ 67% (of the cases the true value is 
within the measured error)  

⇒ 70% (of the cases the measurement is 
within the true statistical RMSD)  

The true value coverage is similar in the two cases, keep these values in mind… 

Here all results are derived from a simulation in terms of frequencies… 
Computing Binomial probabilities with large numbers of N can be quite difficult ! 

See Coverage.C 
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 The Gaussian or Normal Probability 
Is there a way to simplify the computation ? Not so trivial to compute 300! directly… 

A very nice approximation of the Binomial Probability can be achieved using 
Stirling’s Formula ! 

€ 

n!≈ 2πn n
e
$ 

% 
& 
' 

( 
) 
n

lnn!≈ n lnn− n+ 1
2 ln2πn

(See derivation in the next slide) € 

Cn
k pk (1− p)n−k ≈ 1

2πσ 2
e
−
(k− k )2

2σ 2

€ 

σ = np(1− p)

Formula is valid for large values of n… 
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Binomial convergence towards Normal  
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Validity of the Normal Convergence (Approximation) 

Does the approximation apply to our bucket experiment (n=300 and p=15%) ? 

Not bad (although not perfect) ! 

In practice you can use the normal law when approximately n>30 and np>5 

C. F. Gauss (1777-1855) 

See NormalConvergence.C 
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What is so “Normal” About the Gaussian? 
The Central Limit Theorem… … at Work ! 

When averaging various independent random variables (and identically 
distributed) the distribution of the average converges towards a Gaussian 

distribution See CLT.C 

RMS =  

€ 

[0,1]
12

€ 

×
1
2

€ 

×
1
3

€ 

×
1
10

At N=10 an excellent agreement with a 
gaussian distribution is observed 

N = 1 N = 2 N = 3 N = 10 

The CLT is one of the main reasons for the great success of the Gaussian law… 

On the one hand the CLT is very powerful to describe all those phenomena that result from the 
superposition of various other phenomena… but on the other hand it is just a limit…  
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The Notion of Standard Error 

€ 

GPDF (x,µ,σ) =
1
2πσ 2

e
−
(x−µ )2

2σ 2Starting from the gaussian PDF : 

Let’s give a first definition of a central confidence interval as the deviation from the 
central value… 

€ 

P(aσ) =
1
2πσ 2

e
−
(x−µ )2

2σ 2

µ−aσ

µ +aσ

∫ dx

Then for :  -  a = 1 : P(aσ) = 68.3%  
-  a = 2 : P(aσ) = 95.4% 
-  a = 3 : P(aσ) = 99.7 % 

See NormalCoverage.C 

If you knew the true value of the “error” (σ) then you could say that the in the gaussian limit 
that the true value has 68.3% probability to be within the 1s, but in many practical examples 
(such as the well) the true value of the error is not known… 
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How does the Bucket Experiment Relate to Particle Physics? 

This is precisely what we call in particle physics cross sections… 

The bucket experiment is the measurement of an abundance (blue balls)… 

… except that the bucket contains all collisions collected in an experiment so… 

- We try to fill it as much as possible (N is very large and not constant!) 

- The processes we are looking for are very rare (p is very small)  

The very large N makes it difficult to compute the binomial probability… 
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The Poisson Probability 

€ 

Cn
k pk (1− p)n−k ≈ (np)

k

k!
e−(np ) =

µk

k!
e−µ

In the large n and small p limit and assuming that np = µ  is finite you can show 
(see next slide) that …    

Much simpler formulation! In practice you can use the normal law when approximately n>30 and np<5 

See PoissonConvergence.C 

N=100 and p=25% N=100 and p=15% N=100 and p=10% N=100 and p=2% N=100 and p=5% 
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S. D. Poisson (1781-1840) 
Interesting to note that Poisson 

developed his theory  trying not to solve a 
game of chance problem but a question 

of Social Science ! 
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Poisson Intervals (or Errors) 
Now how will you define a central confidence interval in a non symmetric case ? 

The integration needs to start from the most probable value downwards… 
Here is our first encounter with the necessity of an ordering ! 

Equiprobable boundaries  

68% 
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What have we learned ?  

3.- We came across a very important formula in the previous slides  

€ 

Var aiXi
i= 0

n

∑
# 

$ 
% 

& 

' 
( = ai

2Var(Xi) + aia jCov(Xi,X j )
0≤ i< j≤n
∑

i= 0

n

∑

That generalizes (with a simple Taylor expansion) to… 

€ 

var( f (x1,...,xn )) = ( ∂f
∂xi
)2 var(xi) +

∂f
∂xi

∂f
∂x j

cov(xi,x j )
0≤ i< j≤n
∑

i= 0

n

∑

…and a few by-products… 

1.- Repeating measurements allows to converge towards the true value of an 
observable more and more precisely …    

But never reach it with infinite precision !!! 
Even more so accounting for systematics…  

(what if the balls do not have an homogeneous distribution ?) 

2.- Binomial variance is also useful to compute the so-called binomial error, mostly 
used for efficiencies :  

€ 

σε =
σ µ

N
=

ε(1−ε)
N

€ 

µ = np
For an efficiency you must consider n fixed ! 
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Unfortunately in High Energy physics experiments, events (balls) don’t come in 
single colors (white or blue) … Their properties are not as distinct ! 

Background ? 
Let alone that they can be 
indistinguishable (quantum 
interference) 

For instance take this simple event : 

γ
γ

Likelihood 

Higgs ? 

Could be many things … 
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How can we distinguish between the two ? 
Very vast question, let’s first start with how to measure their properties 

(Which is also a very vast question!) 

One clear distinctive feature is that the signal is a narrow mass resonance, while 
the background is a continuum ! 

To measure properties in 
general (a.k.a. parameter 

estimation) among the most 
commonly used tools is the 
maximum likelihood fit…   
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What is a Likelihood ? 
A simple way of defining a Likelihood is a Probability Density Function (PDF) which 
depends on a certain number of parameters… 

Simplistic definition is a function with integral equal to 1… 

Here is your first measurement (36) ! 

Here is its probability ! 

Under certain hypothesis : 
-  Gaussian centered at 45 (p=15%) 
-  Width equal to error for 1 bucket (300 balls)  

-      σ ~ 6.2 blue balls) 

or Likelihood 

Let’s return to the well experiment but under a different angle this time… 

Not so likely ! 

(but this applies to any parameter estimate) 
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σ = np(1− p)

m = number of blue balls 



What happens when we throw more buckets ? 

This probability will soon be very very small (O(0.1))100... It is easier to handle its log : 

€ 

ln(L(µ)) = ln( fµ (ni))
i=1

n

∑

Then the probability of each bucket can be multiplied! 

€ 

L(µ) = fµ (ni)
i=1

N

∏

Then to estimate a parameter one just has to maximize this function of the parameter 
µ  (or minimize -2lnL you will see why in a slide)… 

See how the accuracy translates in the sharpness of the minimum! 

See Fit.C 

N=100 N=1000 N=10000 

ASP2016 : Stats for HEP 35 

m = number of blue balls µ = estimate of the mean 



−2 ln(L(µ)) = −2 ln( fµ (ni ))
i=1

N

∑

In our simple (but not unusual) case we can see that :  

= −2 ln( 1
2πσ

e
−
(mi−µ )

2

2σ 2 )
i=1

N

∑ =
(mi −µ)

2

σ 2
i=1

N

∑ + cste

This is also called        χ 2

There is an exact equivalence between maximizing the Likelihood or minimizing 
the χ2 (Least Squares Method) in the case of a gaussian PDF 

You can also see that the error on 
the measured value will be given by 

a variation of -2 ln L of one unit : 

€ 

Δ(−2ln(L(µ))) =1

€ 

µ = 44.95 ± 0.06

€ 

σ
n

Which is precisely 

See Fit.C 
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“Proof” : Estimation of variance of model parameters (errors)  

The likelihood function 
The mean is estimated by a model 
aj are model parameters 

The errors in the parameters are estimated by 
the diagonal elements of the covariance matrix, 
which for linear least squares is given by the 
inverse of the double partial derivative. 
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In 1d …. simple case 
A robust procedure varies the twice 
log likelihood function about the 
minimum θ* by 1 to find the root of the 
variance in the model parameter. 
 
For higher dimensionality, the tested 
model parameter is stepped while the 
others are varied to maintain the 
minimum condition.  



How to perform an unbinned likelihood fit : 

What have we learned? 

For n=1000 the fit yields 

€ 

µ = 44.91± 0.19

Using a simple binned fit (as shown here 
with 100 bins) in the same data yields : 

€ 

µ = 44.81± 0.20
LSM between the PDF and the bin value  

This can of course be applied to any parameter estimation, as for 
instance the di-photon reconstructed mass ! 

See Fit.C 
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P(u) = (u / 2)
(v/2)−1e−u/2

2Γ(v / 2)

More on the χ2  
 

The χ2 value is itself a statistic (random variable). 
One can repeat the measurement, (collection of the data), and one would get a 
different data set, and then calculate a different χ2

i 
This means that the value of χ2 belongs to a distribution. 
As we can write down a closed mathematical expression for the 
it follows that the χ2 distribution is amenable to analysis, and can be calculated as: 

We have used u = χ2 to avoid confusion with the exponent. 
Γ(v/2) represents the gamma function and v the degrees of freedom (see later).  

χ2 PDF 

χ2 CDF 
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χ 2 = −2 ln( 1
2πσ

e
−
(mi−µ )

2

2σ 2 )
i=1

N

∑ <χ2> = v



Hypothesis Testing 
How to set limits or claim discovery ? 

Hypothesis Testing in HEP Boils Down to One Question :  
Is there a Signal ? 
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Exclusion, Observation or Discovery ? 
The goal here is to assess quantitatively the compatibility of our observation with two 
hypotheses : 

We need to be able to have estimate whether an experiment is more Signal-like or 
Background-Like.  

No-Signal (H0) and presence of Signal (H1)… 

Let’s again take the example 
of the  

 ggà Hà γγ analysis 
at LHC  
(in ATLAS) 
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The F-Test as a test statistic 

So ... consider the case where the test statistic is defined as 

With reference to the High Energy Physics example, in H1, h is the height of a 
(gaussian)peak (of assumed known width) on a smooth background characterised by 
a function of parameters θ, and in H0, there is only the smooth background. 
The ratio of two χ2 distributions will be well defined because the χ2 is well defined. 
The ratio is the F statistic, which itself belongs to a distribution.   

F = χ 2 (H1 | x) / v1
χ 2 (H0 | x) / v2

=

1
v1

( f1(xi;h,
⌢
θ )− yi )

2

σ 2∑
1
v2

( f2 (xi;
⌢
θ )− yi )

2

σ 2∑

Q(F | v1,v2 ) = I v2
v2+v2F

v2
2
, v1
2

!

"
#

$

%
&

Where I is the incomplete beta function. 
Note : We are asking if the two distributions (with and without the peak) are different. 
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χ 2 =
(mi −µ)

2

σ 2
i=1

N

∑ + cste ≈ (yi − y(xi;A,µ, s)
2

σ i
2

i=1

N

∑ + cste2

data point (xi,yi) 

Model dependent on 
parameters (now a gaussian) 

Error in data point, 
assumed Gaussian 
but Poisson in this 
example. 

We can think of the χ2 defined above equivalently as 
 



v1 and v2 are the degrees of freedom for H1 and H0 respectively. 
H1 is described by f(x,h,θ) which has n data points and m free parameters. 
Then, v1 = n – m. H0 will have one more degree of freedom than H1.   

A confidence limit for the rejection (acceptance) of H0, the null hypothesis, that there is 
no peak, corresponds to discovery (exclusion). 
In this analysis, the confidence limit is set at CL%, and the F distribution is integrated 
to the the F-value of FCL. Based on the cumulate F distribution to the point  FCL, we 
are CL% certain that a measured F-value larger than FCL is not statistically acceptable 
as being consistent with H0. 

F PDF F CDF 

FCL 
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1-CL 



This analysis is didactic and illustrative, but it suffers from several drawbacks. It does 
not respect the “look elsewhere” effect, it assumes a normal distribution for the data, it 
cannot easily take into account the full systematics of the measurement, amongst 
other issues.  
 

The “look elsewhere” effect considers that we do not know where the peak should be. 
The estimated probability of the peak must be diluted by the number of ways that it 
could have been manifested (roughly the factor of the measurement interval divided 
by the peak width). 
 
 

To remove dependence on the 
Gaussian assumption, an 
improvement is to develop toy 
Monte Carlo pseudo experiments to 
get the PDFs for H1 and H0, in 
constructing the test statistic 
 
 

€ 

E =
P(H1 | x)
P(H0 | x)
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The Neyman-Pearson Lemma 

The underlying concept in ordering experiments is really to quantify the compatibility 
of the observation with the signal hypothesis (H1) … 

The problem of testing Hypotheses was studied in the 30’s by Jerzy Neyman and 
Egon Pearson… 

They have shown that the ratio of likelihoods of an observation under the two 
hypotheses is the most powerful tool (or test-statistic or order parameter) to  

€ 

E =
P(H1 | x)
P(H0 | x)
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The “χ2 ” statistic for H1 and H0 can be calculated using the synthetic data. 
The toy MC pseudo experiment can be repeated many times, billions of times, and the 
PDF’s of the “χ2 ” statistic for H1 and H0 can be numerically assembled. 
 
The same can be done for the statistic    
 

€ 

E =
P(H1 | x)
P(H0 | x)

The “look elsewhere” effect will be 
accommodated if the peak 
position is a free parameter, and it 
could then range freely in the 
position where the statistical 
fluctuations allow it to be found 
most favorably. Other effects 
(width variations, systematics are 
conceivably able to be included in 
developing the PDF’s. 
 
The process of setting a CL% and 
determining a p-value from the 
CDF can now follow based on 
these distributions. 
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The Profile Likelihood 
A very useful tool to compute limits, observation or discovery sensitivties and treat 
systematics is the Profile Likelihood … based on toy MC pseudo experiments. 

Let’s again take the example of the H→γγ analysis at LHC (in ATLAS) 

We have a simple model for the 
background :  

€ 

b(m,θ) = θ1e
−θ 2m

Relies only on two parameters 

Assume a very simple model for 
the signal : 

s(m,µ) = µs0 ×Gauss(m)
The Gaussian is centered at 120 GeV/c2 and 

a width of 1.4 GeV/c2 
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The Profile Likelihood 

€ 

L(µ,θ | data) = (s(mi,µ)+ b(mi,θ
i∈data
∏ ))

The overall fit model is very simple : 

€ 

This model relies essentially only on two types of parameters :  

- The signal strength parameter (µ) 

- The nuisance parameters (θ) 

It is essentially the signal normalization 

Background description in the “side bands” 

  

€ 

λ(µ) =
L(µ,
  
θ (µ) | data)

L( µ ,
 
θ | data)

Test of a given signal hypothesis µ 

Best fit of the data 

Prescription similar to the Feldman Cousins 

€ 

qµ = −2ln(λ(µ))Usually work with the estimator :  Because … 
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Wilks’ Theorem 
Under the Hµ Signal hypothesis the PL is distributed as  a χ2 with 1 d.o.f. ! 

(v.i.z a well know analytical function) 

Signal-plus-background 
Toy experiments Background only 

 Toy experiments (µ’=0) 

Background-likeliness 

To estimate the overall statistical behavior, toy MC full experiments are simulated and fitted ! 
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95% CL Limits 
The observed 95% CL upper limit on µ  is obtained by varying µ until the p value :  

€ 

1−CLs+b = p = f (qµ
qobs

+∞

∫ |µ)dqµ = 5%

The 95% CL exclusion sensitivity is obtained by varying µ until the p value :  

€ 

p = f (qµ
med (qµ |0)

+∞

∫ |µ)dqµ = 5%

Background only experiments 

This means in other words that if there 
is a signal with strength µ, the false 

exclusion probability is 5%. 

Analytically simple 
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Exclusion Results 
Performing this analysis for several mass hypotheses and using CLs+b the exclusion 
has the same problem as the simple Poisson exclusion with background… 

i.e. a signal of 0 can be excluded with a fluctuation of the background 

We thus apply the (conservative) “modified frequentist” approach that requires :  

€ 

CLb = f (qµ
qobs

+∞

∫ | 0)dqµ

€ 

CLs = CLs+b /CLb = 5% where 

No-Signal (H0) and presence of Signal (H1)… 
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Observation and Discovery 
The method is essentially the same, only the estimator changes…we now use q0  

In this case the f(q0|0) will be distributed as a χ2 with 1 d.o.f. (Wilks’ theorem) 

€ 

p = f (q0
qobs

+∞

∫ | 0)dq0

- To claim an observation (3 σ) : the conventional p-value required is 1.35 10-3 

- To claim an observation (5 σ) : the conventional p-value required is  2.87 10-7 

Corresponds to the “one sided” convention 

This means in other words that in 
absence of signal, the false discovery  

probability is p. 

« a probability of 1 in 10 000 000 is almost 
impossible to estimate » 

R. P. Feynman 
 (What do you care what other people think?) 
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Conclusion 
We went through an overview of the fundamental concepts of statistics for HEP   

If possible take some time to play with the Root-Macros for hands-on experience 

You should now be able to understand the following plot ! 

There is a lot more for you/us to learn about statistical techniques 
In particular concerning the treatment of systematics 

So be patient and take some time to understand the techniques step by step… 
… and follow Laplace’s advice about statistics ! 
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Additional 
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Counting statistics for random events 
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The waiting time distribution between 
random events is exponentially 
distributed. 

C=1 by 
normalisation 



Counting statistics for random events 
 

The number of random events per bin is Poisson distributed 
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