

Modified Gravity: f(R) and Scalar tensor theories

Oral Presentation in ASP2016 By: Joseph Ntahompagaze (ADDIS ABABA UNIVERSITY)

August 8, 2016, Kigali, Rwanda

Modified Gravities:

Figure : A picture showing a summary of modified gravities, Credit:

Introduction: Two ways to get Einstein Field Equations

They are two ways to get Einstein Field Equations:

- From line element, get the metric, Bianchi identities, Riemann tensor, then Ricci scalar and arrive at the EFEs.
- The second: from Hilbert-Einstein action make variation and get the field equations.

$$I_{HE} = \frac{1}{2\kappa} \int d^4x \sqrt{-g} [R + \mathcal{L}_m]. \tag{1}$$

■ The Einstein Field Equations

$$G_{\mu\nu} = \kappa T_{\mu\nu},\tag{2}$$

where $G_{\mu\nu}$ is the Einstein tensor and $T_{\mu\nu}$ is the energy momentum tensor.

Action for Scalar-tensor theory

The scalar tensor theory has the action:

$$I_{ST} = \int d^4x \sqrt{-g} \left[\phi R - \frac{W(\phi)}{\phi} \nabla_{\mu} \phi \nabla^{\mu} \phi - 2\Lambda(\phi) + \mathcal{L}_m(\Psi, g_{\mu\nu}) \right], \tag{3}$$

where $W(\phi)$ is coupling parameter, \mathcal{L}_m is Lagrangian density of matter field Ψ and $\Lambda(\phi)$ is arbitrary function (cosmological constant).

The action in Brans-Dicke theory is for W = const and $\Lambda(\phi) = 0$:

$$I_{BD} = \int d^4x \sqrt{-g} \left[\phi R - \frac{W}{\phi} \nabla_{\mu} \phi \nabla^{\mu} \phi + \mathcal{L}_m(\Psi, g_{\mu\nu}) \right].$$
 (4)

f(R) as sub-class of scalar-tensor theories

The action that represent f(R) gravity is

$$I_{f(R)} = \frac{1}{2\kappa} \int d^4x \sqrt{-g} [f(R) + \mathcal{L}_m]. \tag{5}$$

The action in scalar-tensor theory has the form:

$$I_{f(\phi)} = \frac{1}{2\kappa} \int d^4 \sqrt{-g} \left[f(\phi(R)) + \mathcal{L}_m \right], \tag{6}$$

where $f(\phi(R))$ is the function of $\phi(R)$ and we consider the scalar field ϕ to be

$$\phi = f' - 1. \tag{7}$$

Here the prime indicate differentiation with respect to R.

f(R) Theory in Scalar-Tensor Language(Field Equations)

The field equations from the above action are given as:

$$G_{ab} = \frac{\kappa}{\phi + 1} T_{ab}^{m} + \frac{1}{(\phi + 1)} \left[\frac{1}{2} g_{ab} \left(f - (\phi + 1)R \right) + \nabla_{a} \nabla_{b} \phi - g_{ab} \Box \phi \right]. \tag{8}$$

The scalar filed ϕ obeys the Klein-Gordon equation:

$$\Box \phi - \frac{1}{3} (2f - (\phi + 1)R + T^m) = 0, \tag{9}$$

where T^m is the trace of the matter energy momentum tensor. The effective potential $V(\phi)$ is defined in the way that

$$V'(\phi) = \frac{dV}{d\phi} = \frac{1}{3} (2f - (\phi + 1)R). \tag{10}$$

Some results: $f(R) = \beta R^n$

The model is

$$f(\phi) = \beta \left(\frac{\phi + 1}{n\beta}\right)^{\frac{n}{n-1}}.$$
 (11)

The potential is

$$V(\phi) = \frac{\beta(n-1)(2-n)}{3(2n-1)(n\beta)^{n/(n-1)}} (\phi+1)^{(2n-1)/(n-1)}, \text{ n } \neq 0, \frac{1}{2} \text{ and } 1.$$
(12)

The potential $V(\phi)$ dependence on the scalar field ϕ for the case of the βR^n , is presented in figure below.

Case of $f(R) = \beta R^n$: Potential

Case of $f(R) = \beta R^n$: K-G Equation

The Klein-Gordon Equation is

$$\Box \phi - \frac{1}{3} \left[\frac{2\beta - n\beta}{(n\beta)^{n/(n-1)}} (\phi + 1)^{n/(n-1)} + \frac{3\omega - 1}{\phi + 1} \tilde{\mu}^m \right] = 0.$$
 (13)

Assumptions:

- $lue{\phi}$ depends on time only.
- spatial dependence in the Covariant d'Alembert operator is dropped out.
- μ_m is negligible in the early universe.

Case of $f(R) = \beta R^n$: K-G Solution

Case of $f(R) = \alpha R + \beta R^n$: Potential $V(\phi)$

Case of $f(R) = \alpha R + \beta R^n$: K-G Solution

Conclusion

- f(R) gravity is a subclass of Brane-Dicke scalar tensor theory with the coupling constant W = 0.
- Two f(R) models have been taken as special cases namely $f(R) = \beta R^n$ and $f(R) = \alpha R + \beta R^n$.
- The dependence of $V(\phi)$ on scalar field ϕ is parabolic. This is in agreement with the existing literature about the inflation potential.
- We have obtained solution to Klein-Gordon equation for both cases.
- As time grows the scalar field decreases and approaches zero asymptotically. This inspection is also in agreement with the literature on the scalar field behavior.

REFERENCES

- Clifton, Timothy, et al. "Modified gravity and cosmology, Phys. Rept. 513 (2012) 1189." arXiv preprint arXiv:1106.2476.
- Thomas P. Sotiriou, Valerio Faraoni f(R) theories of gravity Review of Modern Physics, Volume 82, Jan-March 2010.
- Amare Abebe Beyond Concordance Cosmology *Scholars Press, ISBN:978-3-639-76900-5, 2015.*
- Gidelew, Amare Abebe. Covariant perturbations in f (R)-gravity of multi-component fluid cosmologies. Diss. University of Cape Town, 2009.
- Clifton, Timothy, et al. "Modified gravity and cosmology, Phys. Rept. 513 (2012) 1189." arXiv preprint arXiv:1106.2476.
- Fujii, Yasunori. "Some aspects of the scalar-tensor theory."

