Modeling High Energy Radiation from X-ray Binaries

Enoch Ejopu¹

¹Department of Physics, Makerere University P. O. Box 7062, Kampala, Uganda

A Project Proposal for Master of Science Dissertation

Supervisor: Dr. Bosco Oruru

August 2016

Outline

Introduction

High Energy Radiation Atmosphere Window

X-ray Binaries

Low-mass XRBs High-mass XRBs

Objectives of the Study

Aim of the Study Specific Objectives

Methodology

Data Reduction and Analysis Modeling Radiation Processes

Introduction

▶ Electromagnetic radiations range from radio waves, through visible light, to gamma rays, that is, from low frequencies (long λ s) to high frequencies (short λ s); Recall, $c = f\lambda$.

Introduction Cont...

- ▶ High energy radiation mainly deals with X-rays (0.1 100 keV) and γ -rays (> 100 keV).
- ▶ High energy radiation is produced by objects at high temperatures and/or relativistic particles ($v \sim c$).
- It usually requires compact objects, e.g. white dwarfs (WDs), neutron stars (NS), black holes (BHs), with deep gravitational potential;

$$V_{\rm esc} = \sqrt{\frac{2GM}{R}}$$
 approaching c , with R not much greater than Schwarzschild radius: $2GM/c^2$

- ightharpoonup WD: $R\sim 10{,}000$ km, $V_{
 m esc}\sim 0.02c$, $ho\sim 10^{14}$ g/cc.
- ightharpoonup NS: $R\sim 15$ km, $V_{
 m esc}\sim 0.32c$, $ho\sim 10^{14}$ g/cc.
- ▶ BH: Schwarzschild radius = 2.95 km M/M_{\odot} .

Observations of High Energy Radiation

Note that the Earth's atmosphere is opaque to high energy radiation. High energy radiation requires space-based observatories, e.g. satellites.

X-ray Binaries (XRBs)

- XRBs are binary stars which emit large amounts of X-rays.
- XRBs are the brightest X-ray sources in our galaxy, and were among the first X-ray sources to be discovered.

X-ray Binaries (XRBs)

- Two stars in orbit; one of them a normal star, and the other a collapsed/compact star, usually a neutron star or black hole.
- ► The normal/donor star transfers mass to the compact star.

- There are two main types of XRBs, depending on the mass of the normal (companion) star.
- ► A low-mass X-ray binary (LMXB) is one where the normal/donor star is less massive than the compact object, and can be on the main sequence, a degenerate dwarf (white dwarf), or an evolved star (red giant).
- ▶ A typical LMXB emits almost all of its radiation in X-rays, making LMXBs among the brightest objects in the X-ray sky.

X-ray Binaries (XRBs)

► A high-mass X-ray binary (HMXB) is one in which the normal stellar component is a massive star: usually an O or B star, a Be star, or a blue supergiant. E.g. Cyg X-1.

- ▶ In HMXBs, the massive star dominates the emission of optical light, while the compact object is the dominant -ray source.
- ► An intermediate-mass X-ray binary (IMXB) is one in which the normal component is an intermediate-mass star.
- ► Generally, X-rays are produced by matter falling from the normal star to the compact star.
- ► The infalling matter releases gravitational potential energy in the form of X-rays.

Objectives of the Study

General objective

► To model high energy radiation from X-ray binaries.

Specific objectives

- To determine the nature of X-ray light curves from X-ray binaries.
- To determine the nature of γ-ray light curves from X-ray binaries.
- To determine the nature of X-ray spectra from X-ray binaries.
- To determine the nature of γ-ray spectra from X-ray binaries.

Objectives of Cont...

➤ To determine the high energy radiation processes in X-ray binaries.

Source Identification

- Catalog & literature sources
- ► HMXBs& LMXBs

Data Aquisition

- ▶ Data will be obtained from High Energy Astrophysics Science Archive Research Center (HEASARC).
- Alternatives for X-ray data.

Source Identification

- Catalog & literature sources
- HMXBs& LMXBs

Data Aquisition

- ▶ Data will be obtained from High Energy Astrophysics Science Archive Research Center (HEASARC).
- ▶ Alternatives for X-ray data.

XMM-NEWTON

Source Identification

- Catalog & literature sources
- HMXBs& LMXBs

Data Aquisition

- Data will be obtained from High Energy Astrophysics Science Archive Research Center (HEASARC).
- Gamma ray data observed by FERMI.

Data Reduction and Analysis

- ► To use appropriate Softwares as recommended, e.g.
- HEASOFT; SWIFT.
- ► CIAO; CHANDRA
- XSPEC; Spectral fitting

Modeling

▶ To theoretically model the radiation processes.

