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Outlook 

Charged particle and magnetic fields 
Linear approximation 
Dipoles and quadrupoles 
Lorentz equation 
Horizontal plane 
From Lorentz equation to Hill’s equation 
From Hill’s equation to Twiss parameter definition 
Matrix representation 
Storage ring – periodic solution 
Stability diagram 
Chromaticity 
Sextupole correction 
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The accelerator from the particle point of view is a sequence of  
 
Drifts – No external fields – Particles go straight 
Magnetic fields – Particles are bent according to the magnetic rigidity 
Electric fields – Particles go straight, gain or loose energy 
 
 

B E B Reference orbit 

Particle trajectory 
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Transverse dynamics 
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Single particle dynamics in magnetic fields 

Reference system 

y 

x 

s 

x : horizontal 
y : vertical  
s : longitudinal along the trajectory  
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Typical Magnetic Fields  

• Normal: gap appears in the horizontal plane 

• Skew: rotate around beam axis by p/2n 
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Properties of Typical Magnets 

Dipoles: used for guiding the particle trajectories 

Bx = 0 

By  = Bo = constant 
 
Quadrupoles: used to focus the particle trajectories 

Bx = G y 

By  = -G x  

G = constant 

 
 
Sextupoles: used to correct chromatism and non linear terms 

Bx = 2 S x y 

By  = S ( x
2-y2)  

S = constant 
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Lattice in an accelerator 

The first step in calculating a lattice is to consider only the linear components of it 
(quadrupoles and dipoles). Non linear effects and chromatic aberration corrections will 
be evaluated later. 
The trajectory of the reference particle (the particle with nominal energy and initial 
position and divergence set to zero) along the optics is calculated. 
All the other beam particles are represented in a frame moving along the reference 
trajectory, and where the reference particle is always in the center. 
Coordinate systems used to describe the motion are usually locally Cartesian or 
cylindrical (typically the one that allows the easiest field representation) 

Lattice: Sequence of magnets interleaved with drifts (used for diagnostics, vacuum 
pumping, Injection, extraction, etc) 
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Magnetic rigidity 
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Remember: 

Constant magnetic field: B 
 

r 
q 

A charged particle (charge = q) will follow 
a circle of radius r 

Lorentz force:  𝐹𝐿 = 𝑞𝑣𝐵 

Centrifugal force:  𝐹𝑐𝑒𝑛𝑡𝑟 =
𝛾𝑚𝑜𝑣

2

𝜌
 

  𝐹𝐿 = 𝐹𝑐𝑒𝑛𝑡𝑟  

𝐵𝜌 =
𝑝

𝑞
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Equations of motion 

𝐵𝑦 𝑥 = 𝐵0 +
𝑑𝐵𝑦

𝑑𝑥
𝑥 +

1

2!

𝑑2𝐵𝑦

𝑑𝑥2
𝑥2+. . 

𝐵𝑥 𝑦 =
𝑑𝐵𝑥

𝑑𝑦
𝑦 +

1

2!

𝑑2𝐵𝑥

𝑑𝑦2
𝑦2+. . 

Magnetic field representation (consider only normal terms) 

Let’s normalize to momentum  

𝐵𝑦 (𝑥)

𝑝/𝑒
=

𝐵0

𝐵𝑜𝜌
+

𝑔 𝑥

𝑝/𝑒
+

1

2!

𝑒𝑔′

𝑝/𝑒
+ ⋯ 

g𝑔 =
𝑑𝐵𝑦

𝑑𝑥
, 𝑔′ =

𝑑𝑔

𝑑𝑥
 

Concentrate in horizontal motion: only vertical fields 

Gradient and its derivative 
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Equations of motion 

Consider only linear terms: 

𝐵(𝑥)

𝑝/𝑒
=

1

𝜌
+ 𝑘𝑥 where     𝑘 =

𝑔

𝑝/𝑒
=

1

𝐵𝜌

𝑑𝐵𝑦

𝑑𝑥
 

In the ideal orbit, r = const    dr/dt = 0 

General trajectory: r = r+x, with x<<r 

𝐹 = 𝑚
𝑑2

𝑑𝑡2
𝑥 + 𝜌 −

𝑚𝑣2

𝑥 + 𝜌
= 𝑞𝐵𝑦𝑣 

Taylor expansion  
1

𝑥+𝜌
≈

1

𝜌
(1 −

𝑥

𝜌
) Since x<<r 

  
𝑑2

𝑑𝑡2
𝜌 = 0 

𝑚
𝑑2𝑥

 𝑑𝑡2
−

𝑚𝑣2

𝜌
(1 −

𝑥

𝜌
) = 𝑞𝐵𝑦𝑣 

𝑚
𝑑2𝑥

 𝑑𝑡2
−

𝑚𝑣2

𝜌
(1 −

𝑥

𝜌
) = 𝑞𝑣 𝐵0 + 𝑥

𝜕𝐵𝑦

𝜕𝑥
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Equations of motion 

Pass from t to s as independent variable 
𝑑𝑥

𝑑𝑡
=

𝑑𝑥

𝑑𝑠

𝑑𝑠

𝑑𝑡
 

𝑑2𝑥

𝑑𝑡2
=

𝑑

𝑑𝑡

𝑑𝑥

𝑑𝑠

𝑑𝑠

𝑑𝑡
=

𝑑

𝑑𝑠
𝑥′𝑣

𝑑𝑠

𝑑𝑡

= 𝑥′′𝑣2 +
𝑑𝑥

𝑑𝑠

𝑑𝑣

𝑑𝑠
𝑣 

  
Second term is zero 

𝑥′′𝑣2 −
𝑣2

𝜌
1 −

𝑥

𝜌
=

𝑞𝑣𝐵0

𝑚
+

𝑞𝑣𝑥𝑔

𝑚
 

Divide by v2 

𝑥′′ −
1

𝜌
+

𝑥

𝜌2
=

𝐵0

𝑝 𝑞 
+

𝑥𝑔

𝑝 𝑞 
 

𝑥′′ −
1

𝜌
+

𝑥

𝜌2
= −

1

𝜌
+ 𝑘𝑥 

𝑥′′ + 𝑥
1

𝜌2
− 𝑘 = 0 

For vertical plane 
1

𝜌2
= 0, 𝑘 = −𝑘 

𝑦′′ + 𝑘𝑦 = 0 

𝑥′′ + 𝑥
1

𝜌2
− 𝑘 = 0 

 
𝑦′′ + 𝑘𝑦 = 0 
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Solution of equations of motion 

Putting 

Horizontal : 𝐾 =  
1

𝜌2  − 𝑘 

Vertical   : 𝐾 = 𝑘 
 
If K is constant we get the differential equation of harmonic oscillator with spring constant K 

𝑥′′ + 𝐾𝑥 = 0 

𝑥 𝑠 = 𝑎1 cos 𝜔𝑠 + 𝑎2 sin 𝜔𝑠  

𝜔 = 𝐾 

At 𝑠 = 0  ⇒       𝑥 = 𝑥0, 𝑥′ = 𝑥′0 

(where now x can 
represent both x or y)  

𝑎1 = 𝑥0     𝑎2 =
𝑥′0

𝐾
  , 

 

𝑥 𝑠 = 𝑥0 cos 𝐾𝑠 + 𝑥′0
1

𝐾
sin 𝐾𝑠  

𝑥′ 𝑠 = −𝑥0 𝐾 sin 𝐾𝑠 + 𝑥′0 cos 𝐾𝑠  
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Matrix formalism 

  𝑀 =
cos 𝐾𝐿

1

𝐾
sin 𝐾𝐿

− 𝐾 sin 𝐾𝐿 cos 𝐾𝐿
 

𝑥
𝑥′ 𝑠1

= 𝑀
𝑥
𝑥′ 𝑠0

 

We can write the equations in matrix formalism: coordinates at point s1 can be 
obtained knowing the coordinates at s0 

Example: Drift 
Length: L 
K = 0 

𝑀𝐷𝑟𝑖𝑓𝑡 = 
1 𝐿
0 1

 

𝑥1 = 𝑥0 + 𝐿𝑥′0 

𝑥′1 = 𝑥′0 
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Matrix formalism 

Focusing quadrupole: 
Length L , K  > 0  

𝑀 =
cos 𝐾𝐿

1

𝐾
sin 𝐾𝐿

− 𝐾 sin 𝐾𝐿 cos 𝐾𝐿

 

𝑥1 = 𝑥0𝑐𝑜𝑠 𝐾𝐿 +
𝑥′

0

𝐾
𝑠𝑖𝑛 𝐾𝐿 

𝑥′1 = −𝑥′0 𝐾𝑠𝑖𝑛 𝐾𝐿 + 𝑥′
0𝑐𝑜𝑠 𝐾𝐿 

Defocusing quadrupole: 
Length L , K  < 0  

𝑀 =
cosh 𝐾 𝐿

1

𝐾
sinh 𝐾 𝐿

𝐾  sinh 𝐾 𝐿 cosh 𝐾 𝐿
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Thin lens approximation 

In parallel with optics 
𝑀 =

cos 𝐾𝐿
1

𝐾
sin 𝐾𝐿

− 𝐾 sin 𝐾𝐿 cos 𝐾𝐿

 

L=> 0   KL constant 
sin 𝐾𝐿

𝐾𝐿
 -> 1 

 

𝑓 =
1

𝐾𝐿
≫ 𝐿 

 
f  positive or negative 
depending on quad  
 
 
 
 

 

M =
1 0

−𝐾𝐿 1
 = 

1 0

±
1

𝑓
1   
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Dipole 

Sector magnet: 
Nominal particle trajectory is  
perpendicular to dipole entrance 
Horizontal plane: 𝐾 =  1 𝜌2 − 𝑘 

Vertical plane: 𝐾 = 𝑘 

If 𝑘 = 0, 𝐿 =  𝜌𝜃  
𝑀𝐻 =

𝑐𝑜𝑠𝜃 𝜌𝑠𝑖𝑛𝜗

−
1

𝜌
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

 

𝑀𝑉 =
1 𝜌𝜗
0 1

 

 
 

Magnet with field index: 𝑘 ≠ 0 

Exercise – write the matrix 
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System of lattice elements: Drifts (MD), quads (MQ), bendings (or dipoles) (MB) 

Starting with 
𝑥0

𝑥′0
 The final position and divergence of the particle will be 

𝑥1

𝑥′1
 

 
𝑥1

𝑥′
1

= 𝑀𝐷𝑛 ∙ 𝑀𝑄𝑛 ∙ 𝑀𝐷𝑛−1 ⋯ ∙ 𝑀𝐵1 ∙ 𝑀𝐷2 ∙ 𝑀𝑄1 ∙ 𝑀𝐷1 ∙
𝑥0

𝑥′
0

 

 
Or simpler 

𝑥1

𝑥′
1

= 𝑀(𝑠1, 𝑠0) ∙
𝑥0

𝑥′
0

 

 
The mathematical representation of an accelerator lattice is a sequence of matrices 
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Twiss parameters – Betatron tune 

𝑥′′ + 𝐾𝑥 = 0 If K  = constant /harmonic oscillator 
If K varies with s: Hill’s equation  𝑥′′ + 𝐾(𝑠)𝑥 = 0 

The solution of the Hill equation is given by: 
 

𝑥 𝑠 = 𝜀 𝛽 𝑠 𝑐𝑜𝑠 𝜑 𝑠 + 𝜑0  

e and φ0 integration constants 
Inserting 1 in the equation of motion it can be shown that the phase advance is related to   
by 

𝜑 𝑠 =  
𝑑𝑠

𝛽(𝑠)

𝑠

0

 

 
In storage rings (length of circumference = L) beta is periodic  
 

𝛽 𝑠 + 𝐿 = 𝛽(𝑠) 
 
One complete turn: phase advance in one turn: Betatron Tune 

𝑸𝒙,𝒚 =
𝟏

𝟐𝝅
 

𝒅𝒔

𝜷𝒙,𝒚 (𝒔)
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Solution of Hill’s equation 

𝑥 = 𝜀𝛽 cos𝜙 

With  ϕ = 𝜑 𝑠 + 𝜑0 and 𝛽 depending on s  

𝑥′ = 𝜀
𝑑 𝛽

𝑑𝑠
cos𝜙 − 𝜀𝛽

𝑑𝜙

𝑑𝑠
sin𝜙 

 
 

𝑥′ = −𝛼
𝜀

𝛽
cos𝜙 − 𝜀𝛽

𝑑𝜙

𝑑𝑠
sin𝜙 

 

𝑥’’= 𝜀
𝑑2 𝛽

𝑑𝑠2
cos𝜙 − 𝜀

𝑑 𝛽

𝑑𝑠

𝑑𝜙

𝑑𝑠
sin𝜙 − 𝜀

𝑑 𝛽

𝑑𝑠

𝑑𝜙

𝑑𝑠
sin𝜙 − 𝜀𝛽

𝑑2𝜙

𝑑𝑠2
sin𝜙 − 𝜀𝛽

𝑑𝜙

𝑑𝑠

2
cos𝜙 

𝛼𝛼 

𝛼 = −
1

2

𝑑𝛽

𝑑𝑠
 

𝛾 =
1 + 𝛼2

𝛽
 

with 
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Substituting  in the 2nd order equation, and equating to zero terms multipliying sin 
and cos we get: 

−2 𝜀
𝑑 𝛽

𝑑𝑠

𝑑𝜙

𝑑𝑠
− 𝜀𝛽

𝑑2𝜙

𝑑𝑠2
= 0 

Dividing by 𝜀 and differentiating 𝛽: 
 

𝑑𝛽

𝑑𝑠

𝑑𝜙

𝑑𝑠
+ 𝛽

𝑑2𝜙

𝑑𝑠2
= 0 

 
𝛽𝜙′ ′ = 0 

𝛽𝜙′ = 𝑐𝑡𝑒 = 1 
 

𝜙′ = 
1

𝛽
    𝜑 𝑠 =  

𝑑𝑠

𝛽(𝑠)

𝑠

0
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Betatron oscillations 

Betat ron oscillat ion 

• Beta function           : 

– Describes the envelope of the betatron oscillation in an accelerator 

 

• Phase advance: 

• Betatron tune: number of betatron oscillations in one orbital turn  

   

bx (s)

   

y(s) =
1

b x (s)
0

s

ò ds

 

Qx =
y(0 | C)

2p
=

ds

b x (s)
ò /2p =

R

áb x ñ

Nominal closed orbit 
Betatron oscillation  

Particles oscillate around the closed orbit, a number 
of times which is given by the betatron tune. 
The square of the  function by the emittance 
represents the envelope of the betatron oscillations  
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Amplitude of an oscillation 

𝑥 𝑠 = 𝜀 𝛽(𝑠) 
 
𝛽 𝑠 represents the envelope of all particle trajectories at a given position s  in a storage ring 

𝑥 𝑠 = 𝜀 𝛽 𝑠 𝑐𝑜𝑠 𝜑 𝑠 + 𝜑0  

𝑥′ 𝑠 = −
𝜀

𝛽(𝑠)
𝛼 𝑠 cos 𝜑 𝑠 + 𝜑0 + 𝑠𝑖𝑛 𝜑 𝑠 + 𝜑0  

 

𝛼 𝑠 = −
1

2
𝛽′(𝑠) 

𝛾 𝑠 =
1 + 𝛼2(𝑠)

𝛽(𝑠)
 

a,  and  are the Twiss parameters 

Twiss parameters 
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Emittance 

Inserting in x’ eq. 
 

 

 

e is a constant of motion, not depending on s.  
Parametric representation of an ellipse in x,x’ phase space defined by alfa, 
beta, gamma: Courant-Snyder invariant emittance ε 

For a single particle, different positions in the storage ring and different 
turns: 
 

𝜀 = 𝛾 𝑠 𝑥2 𝑠 + 2𝛼 𝑠 𝑥 𝑠 𝑥′ 𝑠 + 𝛽 𝑠 𝑥′2(𝑠) 
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Drawing particle position in different points of a 

storage ring 
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xp beta = 1

alfa = -2

alfa = 0

alfa = 2
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-2

0
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10

x

xp beta = 4

alfa = -2

alfa = 0

alfa = 2

alfa = 0; 
beta = 1; 
gamma = (1+alfa*alfa)/beta; 
eps = 10; 
 for i =1 : npoints 
thdeg (i) = i*13; 
teta(i) = thdeg(i)*rad; 
x(i) = sqrt(eps*beta)*cos(teta(i)); 
xp(i) = -sqrt(eps/beta)*( alfa*cos(teta(i)) + sin(teta(i)) ); 
 hold on 
 end 
grid on 
plot(x,xp,'-r*') 

Same area, same emittance, 
Different orientation  
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Liouville’s theorem 

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

x

xp

Each particle, in absence of non conservative forces, has a constant invariant. 
Under the influence of conservative forces the particle density in phase space is constant. 
Magnetic fields of dipoles and quadrupoles are conservative: 
In a beam the phase space is maintained constant 

Beam size        𝑥𝑚𝑎𝑥 = 𝛽(𝑠)𝜀     𝑥′𝑚𝑎𝑥 = 𝛾(𝑠)𝜀 
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Evolution of particle trajectory related to evolution 

of Twiss Parameters 

𝑥 𝑠 = 𝜀 𝛽 𝑠 𝑐𝑜𝑠 𝜑 𝑠 + 𝜑0  

𝑥′ 𝑠 = −
𝜀

𝛽(𝑠)
𝛼 𝑠 cos 𝜑 𝑠 + 𝜑0 + 𝑠𝑖𝑛 𝜑 𝑠 + 𝜑0  

Developing sin(a+b)  

𝑥 𝑠 = 𝜀 𝛽 𝑠 (𝑐𝑜𝑠𝜑 𝑠 𝑐𝑜𝑠𝜑0 − 𝑠𝑖𝑛𝜑 𝑠 𝑠𝑖𝑛𝜑0) 

𝑥′ 𝑠 = −
𝜀

𝛽(𝑠)
𝛼 𝑠 cos𝜑 𝑠 𝑐𝑜𝑠𝜑0 − 𝛼 𝑠 sin𝜑 𝑠 𝑠𝑖𝑛𝜑0 + sin𝜑 𝑠 𝑐𝑜𝑠𝜑0 + cos𝜑 𝑠 𝑠𝑖𝑛𝜑0  

Starting at   𝑠 0 = 0   𝜑 0 =  0 𝑐𝑜𝑠𝜑0 =
𝑥0

𝜀𝛽0
, 𝑠𝑖𝑛𝜑0 = −

1

𝜀
𝑥′0 𝛽0 +

𝛼0𝑥0

𝛽0
 

Substituting above 

𝑥 𝑠 =
𝛽 𝑠

𝛽0
cos𝜑 𝑠 + 𝛼0𝑠𝑖𝑛𝜑(𝑠) 𝑥0 + 𝛽(𝑠)𝛽0 𝑠𝑖𝑛𝜑(𝑠) 𝑥′0  

𝑥′(𝑠) =
1

𝛽(𝑠)𝛽0

(𝛼0 − 𝛼 𝑠 ) cos𝜑 𝑠 − (1 + 𝛼0𝛼 𝑠 )𝑠𝑖𝑛𝜑(𝑠) 𝑥0

+
𝛽 𝑠

𝛽0
cosφ s − 𝛼(𝑠) 𝑠𝑖𝑛𝜑(𝑠) 𝑥′

0 
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Particle coordinates evolution as a 

function of Twiss parameters 

These equations can be written under matrix formalism 
𝛽 𝑠 → 𝛽𝑠   𝛼 𝑠 → 𝛼𝑠   𝜑 𝑠 → 𝜑𝑠  

  
  

𝑥 𝑠
𝑥′ 𝑠

=

𝛽𝑠

𝛽0
cos𝜑𝑠 + 𝛼0𝑠𝑖𝑛𝜑𝑠 𝛽𝑠𝛽0 𝑠𝑖𝑛𝜑𝑠

1

𝛽𝑠𝛽0

𝛼0 − 𝛼𝑠 cos𝜑𝑠 − (1 + 𝛼0𝛼𝑠)𝑠𝑖𝑛𝜑𝑠

𝛽𝑠

𝛽0
cos𝜑𝑠 − 𝛼𝑠 𝑠𝑖𝑛𝜑𝑠 𝑥′

0

∙
𝑥0

𝑥′0
 

  

Knowing Twiss parameters in two points and phase advance in between it is possible to 
define the particle position in the second point from the first one with no need of knowing 
the elements in between 



Accelerator Physics - UAB 2014-15 C. Biscari - Lectures 4-5-6 Transverse Dynamics 29 

One turn matrix 

 
 

MT 𝑠 =
cos2πQ + αosin2πQ βosin2πQ

−γosin2πQ cos2πQ − αosin2πQ
= cos2πQ ∙ 1 + sin2πQ ∙ J  

 

With   𝟏 =  
1 0
0 1

     𝑎𝑛𝑑   𝐽 =  
𝛼 𝛽
−𝛾 𝛼

 

It can be easily demonstrated that  
 

𝑀𝑇 = 1 

Knowing the one turn matrix at a certain location and the total phase advance,  and a are 
defined at that location 

Exercise: write the expression of  and a as a function of one-turn matrix terms 

For one revolution: 
𝛽 𝑠 = 𝛽0   𝛼 𝑠 → 𝛼0   𝜑 𝑠 → 2𝜋𝑄𝑥,𝑦 

 
One turn matrix 
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N-turns Matrix 

𝑀𝑁 = (1 ∙ 𝑐𝑜𝑠2𝜋𝑄 + 𝐽 ∙ 𝑠𝑖𝑛2𝜋𝑄)𝑁= 1 ∙ 𝑐𝑜𝑠2𝜋𝑁𝑄 + 𝐽 ∙ 𝑠𝑖𝑛2𝜋𝑁𝑄 
 
 
Motion bounded (stable) if the elements of MN are bounded: 
 

𝑐𝑜𝑠2𝜋𝑄 ≤ 1 
 
Or 
 

𝑇𝑟(𝑀) ≤ 2 

Stability condition 
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Transformation of Twiss Parameters 
Start from two positions, so and s 
 

𝑥
𝑥′

= 𝑀 ∙
𝑥0

𝑥′0
 

𝑀 =
𝐶 𝑆
𝐶′ 𝑆′  

Or 
𝜀 = 𝛽𝑠𝑥′

2 + 2𝛼𝑠𝑥𝑥
′ + 𝛾𝑠𝑥

2 
𝜀 = 𝛽0𝑥′0

2 + 2𝛼0𝑥0𝑥′0 + 𝛾0𝑥0
2 

 
𝑥0

𝑥′
0

= 𝑀−1 ∙
𝑥
𝑥′

 

 
𝑥0 = 𝑆′𝑥 − 𝑆𝑥′ 

𝑥′0 = −𝐶′𝑥 + 𝐶𝑥′ 
 
Inserting in e and rearranging the terms on x and x’   
 

𝛽 𝑠 = 𝐶2𝛽0 − 2𝑆𝐶𝛼0 + 𝑆2𝛾0 
𝛼 𝑠 = −𝐶𝐶′𝛽0 + 𝑆𝐶′ + 𝑆′𝐶 𝛼0 − 𝑆𝑆′𝛾0 

𝛾 𝑠 = 𝐶′2𝛽0 − 2𝑆′𝐶′𝛼0 + 𝑆′2𝛾0 
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And can be written in matrix notation: given the Twiss parameters α, β, γ at any point 
in the lattice we can transform them and calculate their values at any other point in 
the ring if we know the transfer matrix. 

𝛽
𝛼
𝛾

=
𝐶2 −2𝐶𝑆 𝑆2

−𝐶𝐶′ 𝑆𝐶′ + 𝑆′𝐶 −𝑆𝑆′
𝐶′2 −2𝑆′𝐶′ 𝑆′2

 
𝛽𝑜

𝛼𝑜

𝛾𝑜

 

Transformation of Twiss Parameters 



Accelerator Physics - UAB 2014-15 C. Biscari - Lectures 4-5-6 Transverse Dynamics 33 

rms Emittance 

The emittance is the area of the phase space occupied by all particles in a beam 
Each particle has its own ‘invariant emittance’ 
rms emittance represents the beam characteristics, and is defined as: 
 

𝜀𝑥
𝑟𝑚𝑠 = 𝑥2 𝑥′2 − 𝑥 𝑥′ 2 

 
Rms values behave the same for all distributions in linear systems 
Most usual beam distributions are gaussian 

X’ 

x 
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Emittance and beam dimensions 

• The emittance is the area of the phase space occupied by the particles 

With the emittance and the Twiss parameters in a point of the 

accelerator, the beam dimensions are obtained : sx,y  e s’x,y 

 

34 

Ellipse area= pex 

1

'

'

2

2

2









xxx

xx

xx

xx

xx

x

x

a

ea

e

e

222 '' xxxxx e

x 

px 

xxx es 

s 'x = gxex
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Effect of a quad on the phase space 

The phase space orientation indicates if the beam trajectories are focused 
or defocused (at rms values): 

s0 s1 s2 
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Example of betatron functions in a 

storage ring - ALBA 

Focusing quads above the line 
Defocusing quads below, 
Dipoles on both sides 
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Emittance in linacs and transfer lines 

Adiabatic damping: 
The Courant-Snyder invariant emittance ε decreases if we accelerate the particle. This is 
called “adiabatic damping”. 
Particle with momentum p0: 

𝑝0
2 = 𝑝𝑠0

2 + 𝑝𝑥0
2 + 𝑝𝑦0

2  

The slope of the trajectory is 

𝑧′′ =
𝑝𝑧

𝑝𝑠
  (𝑧 = 𝑥 or 𝑦) 

 
Accelerating the particle: ps increases but pz does not change 

𝑧′ + ∆𝑧′ =
𝑝𝑧

𝑝𝑠 + ∆𝑝𝑠
=

𝑝𝑧

𝑝𝑠 1 +
∆𝑝𝑠
𝑝𝑠

≈ 𝑧′ 1 −
∆𝑝𝑠

𝑝𝑠
 

And therefore 

∆𝑧′ = −𝑧′
∆𝑝

𝑝
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In the phase space (z,z’): 

For each particle i:     𝑧𝑖 = 𝜀𝛽 cos 𝜑 + 𝜑0                                 𝑧′𝑖 = −
𝜀

𝛽
sin 𝜑 + 𝜑0  

The emittance of the particle is: 

𝜀 = 𝛽𝑧′𝑖
2 + 𝛾𝑧𝑖

2 
The change in e applying Dz’ 

∆𝜀 = 2𝛽𝑧𝑖
′∆𝑧𝑖

′ = −2𝛽𝑧𝑖
′2 ∆𝑝

𝑝
= −2𝜀

∆𝑝

𝑝
𝑠𝑖𝑛2 𝜑 + 𝜑0  

Averaging over all particles: 

∆𝜀 = −𝜀
∆𝑝

𝑝
 =>

𝑑𝜀

𝜀
= −

𝑑𝑝

𝑝
 

𝜀 𝑝 = 𝜀0
𝑝0

𝑝
 

The emittance decreases in linacs as the beam is accelerated. 
Normalized emittance is defined as the invariant part: 

𝜀𝑛 = 𝜀𝛽𝛾 

Where now  and  are not the Twiss parameters, but:  𝛽 =
𝑣

𝑐
 𝑎𝑛𝑑 𝛾 =

1

1−𝛽2 

In absence of other phenomena, the normalized emittance does not change during the 
acceleration 
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Off-Momentum Particles 

 
Magnets are chromatic elements:  

Dipoles: 𝜌 =
𝑝

𝑒𝐵
→

∆𝜌

𝜌0
=

∆𝑝

𝑝0
 =

∆𝜃

𝜃0
 

Quads: 𝐾 =
𝐺

𝐵𝜌
=

𝐺𝑒

𝑝
 

∆𝜃 = −𝜃0

∆𝑝

𝑝0
 

∆𝐾 = −𝐾0

∆𝑝

𝑝0
 

Dp/p<<1 
Off-momentum particles are not oscillating around design orbit, but around a different closed 
orbit (chromatic closed orbit). The displacement between the design and chromatic orbits is 
regulated by the dispersion function D(s). 
For particles with energy deviation the Hill’s equation has an extra term and is not  
homogeneous: 

𝑥′′ + 𝐾 𝑠 𝑥 =
1

𝜌

∆𝑝

𝑝0
 

The solution is the sum of the solution of the homogenous equation + a term of dispersion: 

𝑥 = 𝑥𝐻𝑜𝑚 + 𝐷 𝑠
∆𝑝

𝑝0
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Dispersion equation 

The dispersion equation is: 

𝐷′′(𝑠) + 𝐾 𝑠 𝐷(𝑠) =
1

𝜌
 

 
The dispersion  in a storage ring is a closed orbit.  
 
Example: Dipole 
The solution of the dispersion equation is given by the homogeneous equation solution 
plus a particular one of the non homogenous: 
 

𝐷 𝑠 =  𝐷0 cos
𝑠

𝜌
+ 𝐷′0𝜌 sin

𝑠

𝜌
+ 𝜌 1 − cos

𝑠

𝜌
 

  

𝐷′ 𝑠 =  −
𝐷0

𝜌
sin

𝑠

𝜌
+ 𝐷′

0 cos
𝑠

𝜌
+ sin

𝑠

𝜌
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Or in matrix formalism, representing the particle coordinates including the 
energy deviation: 
 

𝑥
𝑥′

∆𝑝 𝑝 
= 𝑀3𝑥3

𝑥0

𝑥′0
∆𝑝 𝑝 

 

  

𝑀3𝑥3 =
𝐶(𝑠) 𝑆(𝑠) 𝐷(𝑠)

𝐶′(𝑠) 𝑆′(𝑠) 𝐷′(𝑠)
0 0 1

 

  

𝑀𝑠𝑒𝑐𝑡𝑜𝑟 =

𝑐𝑜𝑠𝜃 𝜌𝑠𝑖𝑛𝜃 𝜌(1 − 𝑐𝑜𝑠𝜃)

−
1

𝜌
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

0 0 1
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Also quadrupole focusing properties depend on particle energy: 
The focusing strength is  
 

          𝐾 = 
1

𝐵𝜌

𝑑𝐵

𝑑𝑥
 

 
Their implication on the dispersion function is of second order  

0

0
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But they produce chromaticity 
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Particles with different momentum have different betatron tunes  
(The higher the energy the lower the tunes) 
Chromatism is the spread in tune divided by the spread in momentum 

xx,y =
DQx,y

Dp / p
= -

1

4p
ki

i

å Libx,i

And is given by the sum of the contributions of all elements in the ring 
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Chromaticity correction 

• The natural chromaticity produced by quadrupoles is always 

negative. x has maxima at focusing quads (QF, kx >0) and 

minima at defocusing ones (QD). Horizontal chromaticity is 

dominated by the focusing quads, and x at their positions. 

• Chromaticity must be corrected to avoid large tune spread 

(driving resonances or collective effects like head-tail 

instability) 

 

44 

Sextupoles placed where D is not 
zero, act on particles which are not 
on the nominal orbit, but on  
x = x0 + D Dp/p 
The highest the energy deviation, the 
largest x, the strongest the 
focusing(defocusing) force 
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DQx =
1

4p
bx,s0

mLsx con x = D
Dp

p

DQx

Dp / p
=

1

4p
bx,s0

mLsD

 Sextupoles 

• The field is quadratic :  
 

• Normalized gradient:  

 

 

• Kick:  

 

• Change in tune due to sextupole: 
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Bx = m xy

By =
1

2
m x2 - y2( )

Dx' = -mx2, Dy' = 2mxy

m=
1

Br

d2By

dx2
[m-3]
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Chromaticity correction 

• Sextupole position are chosen so that the produced 

chromaticity counteracts the natural one created by 

quadrupoles 

• Mainly where the dispersion is high and x e y are well 

separated. 

• Total chromaticity is then: 

46 

xx =
DQx

Dp / p
= -

1

4p
bx,ikiLq

i

å +
1

4p
bx,imLsD

i

å

Quadrupoles Sextupoles 
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