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The accelerator from the particle point of view is a sequence of

Drifts — No external fields — Particles go straight

Magnetic fields — Particles are bent according to the magnetic rigidity
Electric fields — Particles go straight, gain or loose energy

Particle trajectory

Reference orbit

Accelerator Physics - UAB 2014-15 Transverse Dynamics

C. Biscari - Lectures 4-5-6



. urBe
ALsa Transverse dynamics

deBarcelona

<t
\ e
N kLi:W
Ch;.-(n " >
D B »
)(\ - '-) 4 t * 0
-~ = Ol NEie
7 — LJ { !
:/'j/>~- 5
.‘/
P
b p
Bl

Accelerator Physics - UAB 2014-15 Transverse Dynamics

C. Biscari - Lectures 4-5-6



. . . . . UNnB
A._)?A Single particle dynamics in magnetic fields et oo

de Barcelona

Reference system

y x : horizontal
sy :vertical
s : longitudinal along the trajectory
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ALB A Typical Magnetic Fields =
2n-pole:
dipole gquadrupole sextupole octupole

g S N

N

S S
N N S

n 1 2 3 4

* Normal: gap appears in the horizontal plane
- Skew: rotate around beam axis by #/2n
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oo Properties of Typical Magnets =

Quadrupoles: used to focus the particle trajectories
B. =Gy

B, =-Gx

G = constant

B, =B, = constant

1

S

Sextupoles: used to correct chromatism and non linear terms
N

Dipoles: used for guiding the particle trajectories ¥

3 0 Jﬁ
N
S X
N

B.=28xy
B, =8 (x*-?) w i
S = constant ;
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o Lattice in an accelerator

Lattice: Sequence of magnets interleaved with drifts (used for diagnostics, vacuum
pumping, Injection, extraction, etc)

o STHCHROTRON RADIATON

The first step in calculating a lattice is to consider only the linear components of it
(quadrupoles and dipoles). Non linear effects and chromatic aberration corrections will
be evaluated later.

The trajectory of the reference particle (the particle with nominal energy and initial
position and divergence set to zero) along the optics is calculated.

All the other beam particles are represented in a frame moving along the reference
trajectory, and where the reference particle is always in the center.

Coordinate systems used to describe the motion are usually locally Cartesian or
cylindrical (typically the one that allows the easiest field representation)
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Ko\ Magnetic rigidity e

Remember:

\'
P
C Constant magnetic field: B

y = ——
J1- 2

momentum p = ymv </ \>

Al
=

totalenergy E = ymc? o<
kinetic energy K = E —mc?
£2 _ \/(ch )2 4 (pC)2 A charged particle (charge = g) will follow
a circle of radius p
Lorentz force: F;, = quB
2 P

Centrifugal force:  Fpper = 22 —) Bp = —

’ q

FL = Fcentr
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Ko\ Equations of motion =

Magnetic field representation (consider only normal terms)

dB 1d*B
By(X) = Bo + d_xyx + Eﬁx2+..
dB,  1d?B,
By(y) =—y+— 24..
() AT R

Concentrate in horizontal motion: only vertical fields

dBy / dg

g = dx — E Gradient and its derivative

Let’s normalize to momentum

By(x)= By +gx+ 1 eg
p/e  By,p p/e 2p/e
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aeEs Equations of motion s

Consider only linear terms:

B(x) 1 g _ 1dBy

=~ 4 kx where k =-—=-=——

p/e P p/e Bp dx
In the ideal orbit, p = const dp/dt=0
General trajectory: p = p+x, with x<<p

2 mup?>
F = m— x+p)— = qB,v
(x +p) x1p 9B

Since x<<p Taylor expansion x— —( — —)
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ALB A Equations of motion =
Pass from tto sas independent variable :
dx  dxds For vertllcal plane
dt dsdt ?=O,k=—k
d’x d (dxds d ds "
= = —(x'v)— y '+ ky =
ez~ dt (ds dt> s ¥V @
2y dx dv
=x"vci+——v
ds ds
Second term is zero 1
v? X vB VX x"+x|=—-k|=
X”UZ——(l——)=q O_I_q g pz
P P m m

Divide by v? " _

., 1+x B0+xg by =1

X —— =
p p* p/q p/q
, 1 x 1
x'——+—-=——+kx
p P P

1
x”+x(?—k>=0
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AL a Solution of equations of motion =
Putting
Horizontal : K = p_12 —k

Vertical K =k

If Kis constant we get the differential equation of harmonic oscillator with spring constant X

x"+Kx=0
x(s) = a4 cos(ws) + a, sin(ws)
w =VK (where now x can

Ats=0 > x=ux, ¥ =% represent both x or y)

x(s) = xq cos(VKs) + x', \/% sin(VKs)
x'(s) = —xo VK sin(VKs) + x'y cos(VKs)

Accelerator Physics - UAB 2014-15 Transverse Dynamics C. Biscari - Lectures 4-5-6 13
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Ko\ Matrix formalism e

We can write the equations in matrix formalism: coordinates at point s, can be
obtained knowing the coordinates at s,

(), =M (),

i ( cos(VKL) \%sin(ﬁL))
- —VK sin(vVKL)  cos(VKL)

Example: Drift

Length: L - _ (1 L
K=0 MDT‘lft - (0 1)

Accelerator Physics - UAB 2014-15 Transverse Dynamics C. Biscari - Lectures 4-5-6 14
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o Matrix formalism e

Focusing quadrupole:
Length L, K >0

COS(\/EL) \/%sin(\/EL)
—VK sin(\/? L) cos(\/? L)

!

X0
X1 = xnCOSVKL + —sinVKL
1 0 \/E

_ x'y = —x'gVKsinVKL + x’ ycosVKL
Defocusing quadrupole:
Length L, K <0

cosh (\/m L)

sinh( |K|L)

1
M = JIKI
\/Wsinh( IKIL) cosh( IKIL)
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ALe A Thin lens approximation e
1
In parallel with optics i — cos(VKL) T sin(VKL)

—VK sin(\/?L) cos(\/?L)

L=>0 KL constant

sin(VKL)
—m 1 1 o0
M= D=(+2 1
_ 1 —KL 1 L7
f—ﬁ>>L

f positive or negative

light-ray}\ O
depending on quad > (Y\\F/
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Sector magnet:

Nominal particle trajectory is
perpendicular to dipole entrance
Horizontal plane: K = 1/p2 —k

Vertical plane: K = k

ny
fk=0L= pd - cos6 psin
H™\ ——sin6 cos8
p
(1 pd
MV_(o 1)

Magnet with field index: k # 0

Exercise — write the matrix

Accelerator Physics - UAB 2014-15 Transverse Dynamics
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System of lattice elements: Drifts (M;), quads (Mg), bendings (or dipoles) (M)
X X
Starting with (x,o ) The final position and divergence of the particle will be (xfl)
0 1

(;'11) = Mpn - MQn *Mpp—q+-" Mpy - Mp; 'MQ1 *Mpq - (;C'Oo)

Or simpler
(er) =MGsu50)- (i)

The mathematical representation of an accelerator lattice is a sequence of matrices

Accelerator Physics - UAB 2014-15 Transverse Dynamics C. Biscari - Lectures 4-5-6 18
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Aiea Twiss parameters — Betatron tune
x"+Kx=0 If K = constant /harmonic oscillator
X" +K(s)x =0 If Kvaries with s: Hill's equation

The solution of the Hill equation is given by:

x(s) = ey B(s)cos(p(s) + @o)

gand @, integration constants
Inserting 1 in the equation of motion it can be shown that the phase advance is related to
by

5 ds

p(s) = | =
o B(s)
In storage rings (length of circumference = L) beta is periodic

B(s +1) = B(s) Ny

One complete turn: phase advance in one turn: Betatron Tune Q
O

1 ds e
Qx,y - 21T Bx,y (S) @O(
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ALB A Solution of Hill’s equation —
_ 1dp
T T 24ds X = \/Ecosq’)
1+ a? With ¢ = @(s) + ¢, and 8 depending on s
‘y =
B

with

d d
x' =4[ fcosqﬁ—@d—fsinqb

x' = —a\/%cosgb—ﬁi—fsincp

) d2/B dJ/Bd¢p . dJ/Bd¢ . d2¢ . de)?
X =\/Ed—;/2—cos¢—\/Ed—‘/fd—fsmcp—\/Ed—‘/E—d)smqb—,/eﬁd—;fsmcp—,/eﬁ(d—f) cos ¢

s ds
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Substituting in the 2" order equation, and equating to zero terms multipliying sin
and cos we get:
dfd d?
_zfi_qb _ glg_qb =0
ds ds ds?
Dividing by +/¢ and differentiating \/_

dpdp  d*p
asds TPz =0

Bep") =0

<-

|l
N|-

S

~
)

—/
1
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o Betatron oscillations S

(B)Y2

Particles oscillate around the closed orbit, a number
of times which is given by the betatron tune.

The square of the B function by the emittance
represents the envelope of the betatron oscillations

C. Biscari - Lectures 4-5-6
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ALea Twiss parameters g

Amplitude of an oscillation

2(s) = Ve /B(s)

B (s)represents the envelope of all particle trajectories at a given position s in a storage ring

x(s) = ey B(s)cos(p(s) + @o)
Ve {a(s) cos(@(s) + @g) + sin(@(s) + @o)}

VB (s)

x'(s) =—

1
a(s) = —5,3'(5)
1+ a?(s)
B(s)

y(s) =

o, B and y are the Twiss parameters

Accelerator Physics - UAB 2014-15 Transverse Dynamics C. Biscari - Lectures 4-5-6 23
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Inserting in x’ eq.
e = y(s)x2(s) + 2a(s)x(s)x'(s) + f(s)x'%(s)

€ is a constant of motion, not depending on s.

Parametric representation of an ellipse in x.x’phase space defined by alfa,
beta, gamma: Courant-Snyder invariant emittance ¢

For a single particle, different positions in the storage ring and different
turns:

-oNely tan2¢ = 2a/(y-B)

Fig. 5.2. Phase space ellipse

Accelerator Physics - UAB 2014-15 Transverse Dynamics
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A Drawing particle position in different points of a yan

de Barcelona

storage ring

alfa=0;

beta = 1;

gamma = (1+alfa*alfa)/beta;

eps = 10; Same area, same emittance,
tfﬁ(;;g ﬁ,:,":’;;‘ts Different orientation
teta(i) = thdeg(i)*rad;

x(i) = sqrt(eps*beta)*cos(teta(i));

xp(i) = -sgrt(eps/beta)*( alfa*cos(teta(i)) + sin(teta(i)) );

hold on

end

grid on

plot(x,xp,"-r*')

p beta=1 10
' xp beta=4

N

Accelerator Physics - UAB 2014-15 Transverse Dynamics C. Biscari - Lectures 4-5-6 25
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Ko\ Liouville’s theorem e

10
Xp

-10°t - - - - - -

-10 -8 -6 -4 -2 0 2 4 6 8 10
Each particle, in absence of non conservative forces, has a constant invariant.

Under the influence of conservative forces the particle density in phase space is constant.

Magnetic fields of dipoles and quadrupoles are conservative:
In a beam the phase space is maintained constant

Beamsize  Xjax = VB(S)Ee  X'ar =V V(S)E

Accelerator Physics - UAB 2014-15 Transverse Dynamics C. Biscari - Lectures 4-5-6 26



2 S Evolution of particle trajectory related to evolution U"Bm

A LB A ] de Barcelona
of Twiss Parameters
x(s) = e/ B(s)cos(@(s) + ¢o)

x'(s) = - ve
VB(s)

Developing sin(a+b)

{a(s) cos(@(s) + @o) + sin(p(s) + o)}

x(s) = ey B(s)(cosp(s)cosp, — sing(s)singy)
x'(s) = — \/%{a(s) cos p(s)cospy, — a(s) sinp(s)sing, + sin @(s)cos@, + cos p(s)sing,}

Startingat s(0) =0 ¢@(0) = 0 cosp, =

X0 / apXo
sin X +
Jepy 00T ( oV Fo \/ﬁo)

Substituting above

15) = B2 cos p(5) + aosing 531y + [YFEIFo sino(s)]x'
(5) = (@ — () 059(9) ~ (1+ Goa(s)sing ()l

0




>
-

. . . unB
o Particle coordinates evolution as a

function of Twiss parameters

These equations can be written under matrix formalism
B(s) = Bs a(s) — as (,O(S) = Qs

& [COS Ps + (,ZOSl'TLQDS] Y, .BS.BO Sinfps
(9)- : ()
x'(s)) 1 P x'o
N [(ag — as) cos g — (1 + apas)sing,] \/% [cosp,s — ag singg]x’

Knowing Twiss parameters in two points and phase advance in between it is possible to
define the particle position in the second point from the first one with no need of knowing
the elements in between
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Ko\ One turn matrix o

For one revolution:
L(s) =Py als) = ag @(s) - 27TQx,y

One turn matrix

_(cos2mQ + a,sin2mQ Bosin2mQ ) _ _ : _
ity () = ( —Y,5in2mQ cos2mQ — o,sin2mQ/ ~ S It o Sas, =)
. (1 0 _(a P
With 1= (O 1) and | = (—y a)

It can be easily demonstrated that
|MT| =1

Knowing the one turn matrix at a certain location and the total phase advance, fand « are

defined at that location
Exercise: write the expression of fand « as a function of one-turn matrix terms
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MN = (1 -cos2rnQ + ] -sin2rQ)¥=1 - cos2nNQ + ] - sin2nNQ

Motion bounded (stable) if the elements of M" are bounded:

lcos2mQ| <1

Or

Tr(M) < 2

Stability condition

Accelerator Physics - UAB 2014-15 Transverse Dynamics C. Biscari - Lectures 4-5-6 30



. . unB
P Transformation of Twiss Parameters = mazae

Start from two positions, s,and s

M= (C’ s’
Or
£ = Bx'? + 2a.xx’ + yx?

e = Box's + 2apx0x's + VoX§

() =m0

Xo =S'x —Sx’'
x'og=—-C'x+Cx'

Inserting in £and rearranging the terms on xand x’

E(S) = Czﬁo — ZSCC(O +Szy0
a(s) = —CC'By+ (SC'+S'C)ay, — SS'y,
y(s) = C"?By — 25'C'ag + S'%y,

Accelerator Physics - UAB 2014-15 Transverse Dynamics C. Biscari - Lectures 4-5-6 31
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P Transformation of Twiss Parameters = mazae

And can be written in matrix notation: given the Twiss parameters a, 3, y at any point
in the lattice we can transform them and calculate their values at any other point in
the ring if we know the transfer matrix.

&4 C2 —2CS §2 Bo
a|=|-cc' SC'+S'C -SS'||a
Y C'2 —28'c’ S22/ \y,

Accelerator Physics - UAB 2014-15 Transverse Dynamics C. Biscari - Lectures 4-5-6
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The emittance is the area of the phase space occupied by all particles in a beam
Each particle has its own ‘invariant emittance’

rms emittance represents the beam characteristics, and is defined as:

£, = J(x2)(x'2) — (x x')?

Rms values behave the same for all distributions in linear systems
Most usual beam distributions are gaussian

Xl




N UunB

aeea Emittance and beam dimensions
*  The emittance is the area of the phase space occupied by the particles
With the emittance and the Twiss parameters in a point of the

accelerator, the beam dimensions are obtained : ¢, e o'y,

Ellipse area= rg,

()= Be,
(x?) =7,

<xx'> =—a,.&

X=X

ﬂxyx_af =1

34
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o Effect of a quad on the phase space =

ALBA

The phase space orientation indicates if the beam trajectories are focused
or defocused (at rms values):

€25, \
A X Tt
_< ¢ QF =t
[ x>0 x'so |~ | e ® Q L i ,\\
6 N W fe
Y — AR e 14 ¢ D 7
\1\ S 7 X 5 B ° \¥l\ }
X<o x P P2 ( i «Xﬂ o
= e
C=C) % OF
g 8% " X {

- ot ! i

e rSl 1 S:S—L‘>‘o o ] GD C

f x>0 x'<o e e +—

> 5 P \\Z?Z’ \ 1 = i "’_:_:3 5 X

|- 5 PR AT e :
/%//—}n < i K /mﬂ <\ //
. § Xeo >
[ K<0 x%eo \\ZL) A xeo
ao
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P Example of betatron functions in a =

storage ring - ALBA

1 O uh“ Hﬂnmﬂh nﬂnmwn“ Hnﬂnmﬂﬂnﬂﬂ]mﬁﬂr:

| 50 ALBA-25 | | | A/[AD-X 3 .04.46 09x"02x"]5 17. 4.9‘33

S 45 p- p» : .

ﬁf 2. | Focusing quads above the line |

g 40 Defocusing quads below, |

=1 35 | Dipoles on both sides
0.4 |
20. 1 | |
15. 1 ]
]0' _ ‘ ‘ ‘ ‘ ‘ ‘ ) . _
5 - A S _

v _V_ \ |
oot Vv -V V2V V2 VLV
0.0 10. 20. 30. 40. 50. 60. 70. 80.

s (m)
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5. Emittance in linacs and transfer lines -

Adiabatic damping:

The Courant-Snyder invariant emittance € decreases if we accelerate the particle. This is
called “adiabatic damping”.

Particle with momentum pO:

P5 = Do + Pro + Py
The slope of the trajectory is

2 =Lz (z=xory)
Ds
Accelerating the particle: p increases but p, does not change
A
2+ Az = — = PZA zz’(l—ﬁ>
ps + Aps 1 ApPs Ds
ps\1+ De

And therefore

Accelerator Physics - UAB 2014-15 Transverse Dynamics C. Biscari - Lectures 4-5-6 37
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In the phase space (z,2’):
. . , £ .
For each particlei: z; = ,/&gB cos(p + @) zZ; = —\/% sin(@ + @)
The emittance of the particle is:
The change in gapplying Az’

As = 2BzAz] = —2Bz" — = —Ze?psinz(cp + ¢o)

Averaging over all particles:

(Ae) = —g— => = = ¢
s p

0

e(p) = gg—

°p

The emittance decreases in linacs as the beam is accelerated.
Normalized emittance is defined as the invariant part:

En = EPY

. 1
Where now [3 and y are not the Twiss parameters, but: f = % andy = "
In absence of other phenomena, the normalized emittance does not change during the

acceleration
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o Off-Momentum Particles

Magnets are chromatic elements:
D Ap _ Ap A6

Dipoles: p = — — = =
P P ZB G.Do Po 6o
Quads: K = — = =
Bp p
AG =
AK =
Ap/p<<1

Off-momentum particles are not oscillating around design orbit, but around a different closed
orbit (chromatic closed orbit). The displacement between the design and chromatic orbits is
regulated by the dispersion function D(s).

For particles with energy deviation the Hill's equation has an extra term and is not

homogeneous:
1A
x"+K(s)x = -2P
P Po
The solution is the sum of the solution of the homogenous equation + a term of dispersion:
A
X = Xgom + D(s)—p
Po
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2 Dispersion equation

de Barcelona

The dispersion equation is:

D"(s) + K(s)D(s) = %

The dispersion in a storage ring is a closed orbit.

Example: Dipole

The solution of the dispersion equation is given by the homogeneous equation solution
plus a particular one of the non homogenous:

s) = D, cos 5 0P Sin 5 p COS 5
D'(s) = — &sin <£> + D', cos <£> + sin <£>
p\p p p

Accelerator Physics - UAB 2014-15 Transverse Dynamics C. Biscari - Lectures 4-5-6 40
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Or in matrix formalism, representing the particle coordinates including the

energy deviation:
X X0
Ap/p Ap/p

C(s) S(s) D(s)
M3y3 = (C’(S) S'(s) D’(s))
0 0 1

cosf psind p(1 — cosB)

Msoctor =| ——sinf cosO sin@
p

0 0 1

Accelerator Physics - UAB 2014-15 Transverse Dynamics C. Biscari - Lectures 4-5-6 41
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Also quadrupole focusing properties depend on particle energy:
The focusing strength is

1 dB

K= —
Bp dx

Their implication on the dispersion function is of second order

Ky =—EG:—LGz—i[ pij k, — Ak = error :Ak = IDk

P Po +Ap Po 0 Po

But they produce chromaticity

Accelerator Physics - UAB 2014-15 Transverse Dynamics C. Biscari - Lectures 4-5-6
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Particles with different momentum have different betatron tunes
(The higher the energy the lower the tunes)
Chromatism is the spread in tune divided by the spread in momentum

M
|
e
<
|
=
M
by
Iy
5@

And is given by the sum of the contributions of all elements in the ring

Accelerator Physics - UAB 2014-15 Transverse Dynamics C. Biscari - Lectures 4-5-6
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Chromaticity correction

The natural chromaticity produced by quadrupoles is always
negative. 3, has maxima at focusing quads (QF, k, >0) and
minima at defocusing ones (QD). Horizontal chromaticity is
dominated by the focusing quads, and [, at their positions.

Chromaticity must be corrected to avoid large tune spread
(driving resonances or collective effects like head-tall
Instability)

Sextupoles placed where D is not Ap

zero, act on particles which are not 2

on the nominal orbit, but on A _,

X =X,+ D Ap/p e R e -
The highest the energy deviation, the Ap

largest x, the strongest the N =

focusing(defocusing) force

44
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~EEs Sextupoles seprns
B, =mxy

The field is quadratic :

y:%m(xz_ y2)

Normalized gradient:

1 d°B,
= m
Br dx’ [m"]
* Kick: Dx' =- nx®, Dy' =2nxy

Change in tune due to sextupole:

DQ, = 4prSOmLx con x:D%

DI?S 1 b, s,mLD
P 4ap
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o Chromaticity correction

- Sextupole position are chosen so that the produced
chromaticity counteracts the natural one created by
guadrupoles

* Mainly where the dispersion is high and (3, e 3, are well
separated.

- Total chromaticity is then:

_ DQy _
X_Dp/p_ 4pz:bX|k||— + pzi:bx,imLsD
T T

Quadrupoles Sextupoles

46
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