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Contents of lecture 2

• Some examples of measurements done with the instruments 

explained during the last lecture

– Spectroscopy

– Trajectory and Orbit measurements

– Tune measurements

• Traditional method

• BBQ method

– Multi-turn extraction

– Bunch Shape

– Transverse and longitudinal emittance measurements

– Longitudinal phase space tomography
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Setup for charge state measurement

• The spectrometer 

magnet is swept 

and the current 

passing the slit is 

measured

beam

Ion

source

Faraday

Cup

Spectrometer

Magnet
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Measuring charge state distribution

Faraday Cup

Slit

Spectrometer

magnets
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Charge state distribution measured 

with a Faraday Cup on a heavy ion 

source
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Trajectory Measurement at 

LHC

7

Knowing the optics one can deduce the orbit correction from the 

measurement 
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The PUs
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The PS, a universal machine

All beams pass through the PS

Different particle types

Different beam characteristics

Concept of a super cycle
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The super cycle
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Position Measurements

Red: The sum signal

Green: The difference signal 

Procedure:

Produce integration gates and

Baseline signals

Baseline correct both signals

Integrate sum and difference signals 

and store results in memory

Take external timing events into 

account e.g. harmonic number 

change, γ-transition etc.

Revolution time: ~ 1 µs

Sampling frequency: 120 MHz
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Trajectory readout electronics
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Trajectory measurements in circular 

machines

Needs integration gate

Can be rather tricky

Distance between bunches

changes with acceleration

Number of bunches 

may change

Raw data from pick-ups

double batch injection
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Beams in the PS
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Baseline restoration

Low pass filter the signal to get an estimate of the base line

Add this to the original signal
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RF Gymnastics

16



Kigali, Rwanda 2016

Changing bunch frequency

• Bunch splitting or recombination

• One RF frequency is gradually 

decreased while the other one 

is increased

• Batch compression

For all these cases the gate 

generator must be synchronized
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Tune measurements

• When the beam is displaced (e.g. at injection or with a 

deliberate kick, it starts to oscillate around its nominal orbit 

(betatron oscillations) 

• Measure the trajectory

• Fit a sine curve to it

• Follow it during one revolution

kicker
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The Sensors

 

 

The kicker

Shoebox pick-up

with linear cut
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Tune measurements with a single 

PU

Design by P. Forck
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Kicker + 1 pick-up

• Measures only non-integral part of Q

• Measure a beam position at each revolution

Fourier transform of pick-up signal
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Periodic extension of the signal and 

Windowing

discontinuity

22



Kigali, Rwanda 2016

Windowing 

The Discrete Fourier 

assumes one cycle of a 

repetitive signal.

Blackman-Harris Window is 

used

Each sample is multiplied 

with a coefficient 

Coefficients are pre-

calculated and stored in a 

table
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Peak search algorithm

• Power value is bigger than its predecessor

• Power value is bigger than its successor

• Power value is biggest in the whole spectrum

• The power value is at least 3 times bigger than the arithmetic 

mean of all power bins.
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Q interpolation

Betatron signal is not a pure

Harmonic but includes rev. freq

Harmonics, noise …

The windowing process is not 

Perfect

Coherent betatron signal is 

Damped in the time domain

cnbnanV

cbnannV
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Q-Measurement Results
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Direct Diode Detection Base Band Q 

measurement

Diode Detectors convert spikes to saw-tooth waveform

Signal is connected to differential amplifier to cut out DC level

Filter eliminates most of the revolution frequency content

Output amplifier brings the signal level to amplitudes suitable for long distance 

transmission 
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BBQ Results from CERN SPS

Results from Sampling After Fourier Transform
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Tune feedback at the LHC
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Emittance measurements

A beam is made of many many particles,

each one of these particles is moving with

a given velocity. Most of the velocity

vector of a single particle is parallel to the

direction of the beam as a whole (s).

There is however a smaller component of

the particles velocity which is

perpendicular to it (x or y).

yyxxssparticle uvuvuvv ˆˆˆ 


Design by E. Bravin
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Emittance measurements

• If for each beam particle we 

plot its position and its 

transverse angle we get a 

particle distribution who’s 

boundary is an usually ellipse.  

• The projection onto the x axis 

is the beam size

x’

x

Beam size
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The slit method

• If we place a slit into the beam we cut 

out a small vertical slice of phase 

space

• Converting the angles into position 

through a drift space allows to 

reconstruct the angular distribution at 

the position defined by the slit

x’

x

slit
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Transforming angular distribution to 

profile

• When moving through a 

drift space the angles 

don’t change (horizontal 

move in phase space)

• When moving through a 

quadrupole the position 

does not change but the 

angle does (vertical 

move in phase space)

x’

x

slit

x’

x

slit

x’

x

slit

Influence of a drift space

Influence of a quadrupole
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The Slit Method
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Phase Space Scanner
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Emittance plot Solenoid

• 0

36

The solenoid splits 

the trajectories according to

particle type.

The source produces

• protons

• H0

• H2
+

• H3
+
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Moving slit emittance measurement

• Position resolution given by slit size and displacement

• Angle resolution depends on resolution of profile measurement 

device and drift distance

• High position resolution → many slit positions → slow

• Shot to shot differences result in measurement errors
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Multi-slit measurement

Needs high resolution profile detector

Must make sure

that profiles

dont overlap

beam

Scintillator + TV + frame grabber

often used as profile detector

Very old idea, was used with photographic plates
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Pepperpot

Uses small holes instead of slits

Measures horizontal and vertical emittance in a single shot

Photo P. Forck
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Measuring the Bunch Shape

A very crude estimation:

• RF at 352 MHz -> RF-cycle: ~ 2.7 ns

• Bunch width ~ 20%: 540 ps

• want at least 20 points: resolution in the order of some ten ps
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Principle of the BSM

41

Put a target wire into the beam 
(100 μm Tungsten wire).
Secondary electrons are created 
and accelerated due to HV on 
the target wire
The electrons  pass through a slit 
followed by an RF deflector 
synchronous to the accelerator 
RF

An electron detector detects 
particles with a defined phase
The deflector RF is shifted with a 
phase shifter
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Photo of Linac-4 BSM
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Typical BSM results
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Typical BSM plot
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Computed Tomography (CT)

Principle of Tomography:

• Take many 2-dimensional Images at 

different angles

• Reconstruct a 3-dimensional picture

using mathematical techniques

(Algebraic Reconstruction Technique,

ART)
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The reconstruction 

Produce many 

projections of the 

object to be 

reconstructed

Back project 

and overlay 

the “projection 

rays”

Project the back-

projected object 

and calculate the 

difference 

Iteratively back-

project the 

differences to re-

construct the 

original object
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Some CT resuluts
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Computed Tomography  and 

Accelerators

RF voltage

Restoring force for non-

synchronous particle

Longitudinal phase space

Projection onto Φ axis 

corresponds to bunch profile
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Reconstructed Longitudinal Phase 

Space
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Bunch Splitting
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