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Before we begin…

• Any questions on the lectures or 

exercises up to this point?
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Workflows

• What if you have a complex set of 

programs to run for your science?

• For example:

 You want to analyze a set of images

 Each image needs to be pre-processed

 Each image needs to be analyzed

 You need to summarize the results of all 

the analyses

 Each of these is done with a separate 

application
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Workflows

One Image:
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Pre-process

Analyze

Pre-process

Analyze

Three Images:

Pre-process

Analyze

Pre-process

Analyze

Summarize
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Workflows: definition

Definition 1: 

A set of steps to complete a complex task

Definition 2:

A graph of jobs to run: some jobs need to 

run before others while other jobs can run 

in parallel
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Example of a LIGO Inspiral DAG
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• Condor handles Tens of millions of jobs per year 

running on the LDG, and up to 500k jobs per DAG.

• Condor standard universe check pointing widely 

used, saving us from having to manage this.

• At Caltech, 30 million jobs processed using 22.8 

million CPU hrs. on 1324 CPUs in last 30 months.

• For example, to search 1 yr. of data for GWs from 

the inspiral of binary neutron star and black hole 

systems takes ~2 million jobs, and months to run on 

several thousand ~2.6 GHz nodes.

(Statement from 2010—”last 30 months” isn’t from now. Also, I think 

they do up to 1 million jobs per DAG now.)
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Use of Condor by the 

LIGO Scientific Collaboration
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Example workflow: 

Bioinformatics
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From Mason, Sanders, State (Yale)

http://pegasus.isi.edu/applications/association_test
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Example workflow: Astronomy
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From Berriman & Good (JPAC)

http://pegasus.isi.edu/applications/galactic-plane
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DAGMan
• DAGMan:

Directed Acyclic Graph (DAG)

Manager (Man)

• Allows you to specify the dependencies 

between your jobs

• Manages the jobs and their dependencies

• That is, it manages a workflow of jobs
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What is a DAG?

• A DAG is the structure used by 
DAGMan to represent these 
dependencies.

• Each job is a node in the DAG.

• Each node can have any number of 
“parent” or “children” nodes – as 
long as there are no loops!

A

B C

D

OK:

A

B C

Not OK:
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Defining a DAG

• A DAG is defined by a .dag file, listing each of its nodes 

and their dependencies. For example:

Job A a.sub

Job B b.sub

Job C c.sub

Job D d.sub

Parent A Child B C

Parent B C Child D

Job A

Job B Job C

Job D
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DAG Files….

• This complete DAG has five files

Job A a.sub

Job B b.sub

Job C c.sub

Job D d.sub

Parent A Child B C

Parent B C Child D

One DAG File: Four Submit Files:

Universe = Vanilla

Executable = analysis…

Universe = …
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Submitting a DAG

• To start your DAG, just run condor_submit_dag with 

your .dag file, and Condor will start a DAGMan process 

to manage your jobs:

% condor_submit_dag diamond.dag

• condor_submit_dag  submits a Scheduler Universe job 

with DAGMan as the executable

• Thus the DAGMan daemon itself runs as a Condor job, 

so you don’t have to baby-sit it
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DAGMan

Running a DAG

• DAGMan acts as a scheduler, managing the 

submission of your jobs to Condor based on the 

DAG dependencies

Condor

Job

Queue

B C

D

A

A

.dag

File
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DAGMan

Running a DAG (cont’d)

• DAGMan submits jobs to Condor at the 

appropriate times

• For example, after A finishes, it submits B & C

Condor

Job

Queue

C

D

B

C

B

A

16



2012 Africa Grid School

DAGMan

Running a DAG (cont’d)

• A job fails if it exits with a non-zero exit code

• In case of a job failure, DAGMan runs other jobs until it 

can no longer make progress, and then creates a 

“rescue” file with the current state of the DAG

Condor

Job

Queue

X

D

A

B

Rescue

File
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DAGMan

Recovering a DAG

• Once the failed job is ready to be re-run, the 

rescue file can be used to restore the prior state 

of the DAG

 Another example of reliability for HTC!

Condor

Job

Queue

C

D

A

B

Rescue

File

C

18



2012 Africa Grid School

DAGMan

Recovering a DAG (cont’d)

• Once that job completes, DAGMan will continue 

the DAG as if the failure never happened

Condor

Job

Queue

C

D

A

B

D
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DAGMan

Finishing a DAG

• Once the DAG is complete, the DAGMan job 

itself is finished, and exits

Condor

Job

Queue

C

D

A

B
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DAGMan & Fancy Features

• DAGMan doesn’t have a lot of “fancy 

features”

 No loops

 Not much assistance in writing very large 

DAGs (script it yourself)

• Focus is on solid core

 Add the features people need in order to 

run large DAGs well

 People build systems on top of DAGMan
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Related Software

Pegasus: http://pegasus.isi.edu/
 Writes DAGs based on abstract description

 Runs DAG on appropriate resource (Condor, OSG, 
EC2…)

 Locates data, coordinates execution

 Uses DAGMan, works with large workflows

Makeflow: http://nd.edu/~ccl/software/makeflow/
 User writes make file, not DAG

 Works with Condor, SGE, Work Queue…

 Handles data transfers to remote systems

 Does not use DAGMan
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DAGMan: Reliability

• For each job, Condor generates a log file

• DAGMan reads this log to see what has happened

• If DAGMan dies (crash, power failure, etc…)

 Condor will restart DAGMan

 DAGMan re-reads log file

 DAGMan knows everything it needs to know

 Principle: DAGMan can recover state from files and 
without relying on a service (Condor queue, 
database…)

• Recall: HTC requires reliability!
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Advanced DAGMan Tricks

• Throttles 

• DAGs without dependencies

• Sub-DAGs

• Pre and Post scripts: editing your DAG
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Throttles

• Failed nodes can be automatically retried 

a configurable number of times

 Helps recover from jobs that crash some 

percentage of the time

• Throttles to control job submissions

 Max jobs submitted

 Max scripts running

 These are important when working with large 

DAGs
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DAGs without dependencies

• Submit DAG with:

 200,000 nodes

 No dependencies

• Use DAGMan to throttle the job 

submissions:

 Condor is scalable, but it will have 

problems if you submit 200,000 jobs 

simultaneously

 DAGMan can help you with scalability even 

if you don’t have dependencies

A1 A2 A3
…

26



2012 Africa Grid School

Sub-DAG

• Idea: any given DAG node can be another 
DAG

 SUBDAG External Name DAG-file

• DAG node will not complete until sub-dag 
finishes

• Interesting idea: A previous node could 
generate this DAG node

• Why?
 Simpler DAG structure

 Implement a fixed-length loop

 Modify behavior on the fly
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Sub-DAG

A

B C

D

V W

Z

X Y
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DAGMan scripts

• DAGMan allows pre & post scripts

 Run before (pre) or after (post) job

 Run on the same computer you submitted from

 Don’t have to be scripts: any executable

• Syntax:
JOB A a.sub

SCRIPT PRE A before-script $JOB

SCRIPT POST A after-script $JOB $RETURN
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So What?

• Pre script can make decisions

 Where should my job run? (Particularly useful to 

make job run in same place as last job.)

 What should my job do?

 Generate Sub-DAG

• Post script can change return value

 DAGMan decides job failed in non-zero return value

 Post-script can look at {error code, output files, etc} 

and return zero or non-zero based on deeper 

knowledge.
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Quick UNIX Refresher 

Before We Start

• $

• nano, vi, emacs, cat >, etc.

• module, scp, cp, watch, cat, ls, 
rm
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Let’s try it out!

• Exercises with DAGMan.
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Questions?

• Questions? Comments?

• Feel free to ask me questions now or 

later:

Kyle Gross – kagross@iu.edu

Rob Quick - rquick@iu.edu
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