
Workflows

Kyle Gross – kagross@iu.edu

Operations Support Manager - Open Science Grid

Research Technologies - Indiana University

Some Slides Contributed by the University of

Wisconsin HTCondor Team, Rob Quick and Scot

Kronenfeld

2012 Africa Grid School

Before we begin…

• Any questions on the lectures or

exercises up to this point?

2

2012 Africa Grid School

Workflows

• What if you have a complex set of

programs to run for your science?

• For example:

 You want to analyze a set of images

 Each image needs to be pre-processed

 Each image needs to be analyzed

 You need to summarize the results of all

the analyses

 Each of these is done with a separate

application

3

2012 Africa Grid School

Workflows

One Image:

4

Pre-process

Analyze

Pre-process

Analyze

Three Images:

Pre-process

Analyze

Pre-process

Analyze

Summarize

2012 Africa Grid School

Workflows: definition

Definition 1:

A set of steps to complete a complex task

Definition 2:

A graph of jobs to run: some jobs need to

run before others while other jobs can run

in parallel

5

2012 Africa Grid School

Example of a LIGO Inspiral DAG

6

2012 Africa Grid School

• Condor handles Tens of millions of jobs per year

running on the LDG, and up to 500k jobs per DAG.

• Condor standard universe check pointing widely

used, saving us from having to manage this.

• At Caltech, 30 million jobs processed using 22.8

million CPU hrs. on 1324 CPUs in last 30 months.

• For example, to search 1 yr. of data for GWs from

the inspiral of binary neutron star and black hole

systems takes ~2 million jobs, and months to run on

several thousand ~2.6 GHz nodes.

(Statement from 2010—”last 30 months” isn’t from now. Also, I think

they do up to 1 million jobs per DAG now.)

7

Use of Condor by the

LIGO Scientific Collaboration

2012 Africa Grid School

Example workflow:

Bioinformatics

8

From Mason, Sanders, State (Yale)

http://pegasus.isi.edu/applications/association_test

2012 Africa Grid School

Example workflow: Astronomy

9

From Berriman & Good (JPAC)

http://pegasus.isi.edu/applications/galactic-plane

2012 Africa Grid School

DAGMan
• DAGMan:

Directed Acyclic Graph (DAG)

Manager (Man)

• Allows you to specify the dependencies

between your jobs

• Manages the jobs and their dependencies

• That is, it manages a workflow of jobs

10

2012 Africa Grid School

What is a DAG?

• A DAG is the structure used by
DAGMan to represent these
dependencies.

• Each job is a node in the DAG.

• Each node can have any number of
“parent” or “children” nodes – as
long as there are no loops!

A

B C

D

OK:

A

B C

Not OK:

11

2012 Africa Grid School

Defining a DAG

• A DAG is defined by a .dag file, listing each of its nodes

and their dependencies. For example:

Job A a.sub

Job B b.sub

Job C c.sub

Job D d.sub

Parent A Child B C

Parent B C Child D

Job A

Job B Job C

Job D

12

2012 Africa Grid School

DAG Files….

• This complete DAG has five files

Job A a.sub

Job B b.sub

Job C c.sub

Job D d.sub

Parent A Child B C

Parent B C Child D

One DAG File: Four Submit Files:

Universe = Vanilla

Executable = analysis…

Universe = …

13

2012 Africa Grid School

Submitting a DAG

• To start your DAG, just run condor_submit_dag with

your .dag file, and Condor will start a DAGMan process

to manage your jobs:

% condor_submit_dag diamond.dag

• condor_submit_dag submits a Scheduler Universe job

with DAGMan as the executable

• Thus the DAGMan daemon itself runs as a Condor job,

so you don’t have to baby-sit it

14

2012 Africa Grid School

DAGMan

Running a DAG

• DAGMan acts as a scheduler, managing the

submission of your jobs to Condor based on the

DAG dependencies

Condor

Job

Queue

B C

D

A

A

.dag

File

15

2012 Africa Grid School

DAGMan

Running a DAG (cont’d)

• DAGMan submits jobs to Condor at the

appropriate times

• For example, after A finishes, it submits B & C

Condor

Job

Queue

C

D

B

C

B

A

16

2012 Africa Grid School

DAGMan

Running a DAG (cont’d)

• A job fails if it exits with a non-zero exit code

• In case of a job failure, DAGMan runs other jobs until it

can no longer make progress, and then creates a

“rescue” file with the current state of the DAG

Condor

Job

Queue

X

D

A

B

Rescue

File

17

2012 Africa Grid School

DAGMan

Recovering a DAG

• Once the failed job is ready to be re-run, the

rescue file can be used to restore the prior state

of the DAG

 Another example of reliability for HTC!

Condor

Job

Queue

C

D

A

B

Rescue

File

C

18

2012 Africa Grid School

DAGMan

Recovering a DAG (cont’d)

• Once that job completes, DAGMan will continue

the DAG as if the failure never happened

Condor

Job

Queue

C

D

A

B

D

19

2012 Africa Grid School

DAGMan

Finishing a DAG

• Once the DAG is complete, the DAGMan job

itself is finished, and exits

Condor

Job

Queue

C

D

A

B

20

2012 Africa Grid School

DAGMan & Fancy Features

• DAGMan doesn’t have a lot of “fancy

features”

 No loops

 Not much assistance in writing very large

DAGs (script it yourself)

• Focus is on solid core

 Add the features people need in order to

run large DAGs well

 People build systems on top of DAGMan

21

2012 Africa Grid School

Related Software

Pegasus: http://pegasus.isi.edu/
 Writes DAGs based on abstract description

 Runs DAG on appropriate resource (Condor, OSG,
EC2…)

 Locates data, coordinates execution

 Uses DAGMan, works with large workflows

Makeflow: http://nd.edu/~ccl/software/makeflow/
 User writes make file, not DAG

 Works with Condor, SGE, Work Queue…

 Handles data transfers to remote systems

 Does not use DAGMan

22

2012 Africa Grid School

DAGMan: Reliability

• For each job, Condor generates a log file

• DAGMan reads this log to see what has happened

• If DAGMan dies (crash, power failure, etc…)

 Condor will restart DAGMan

 DAGMan re-reads log file

 DAGMan knows everything it needs to know

 Principle: DAGMan can recover state from files and
without relying on a service (Condor queue,
database…)

• Recall: HTC requires reliability!

23

2012 Africa Grid School

Advanced DAGMan Tricks

• Throttles

• DAGs without dependencies

• Sub-DAGs

• Pre and Post scripts: editing your DAG

24

2012 Africa Grid School

Throttles

• Failed nodes can be automatically retried

a configurable number of times

 Helps recover from jobs that crash some

percentage of the time

• Throttles to control job submissions

 Max jobs submitted

 Max scripts running

 These are important when working with large

DAGs

25

2012 Africa Grid School

DAGs without dependencies

• Submit DAG with:

 200,000 nodes

 No dependencies

• Use DAGMan to throttle the job

submissions:

 Condor is scalable, but it will have

problems if you submit 200,000 jobs

simultaneously

 DAGMan can help you with scalability even

if you don’t have dependencies

A1 A2 A3
…

26

2012 Africa Grid School

Sub-DAG

• Idea: any given DAG node can be another
DAG

 SUBDAG External Name DAG-file

• DAG node will not complete until sub-dag
finishes

• Interesting idea: A previous node could
generate this DAG node

• Why?
 Simpler DAG structure

 Implement a fixed-length loop

 Modify behavior on the fly

27

2012 Africa Grid School

Sub-DAG

A

B C

D

V W

Z

X Y

28

2012 Africa Grid School

DAGMan scripts

• DAGMan allows pre & post scripts

 Run before (pre) or after (post) job

 Run on the same computer you submitted from

 Don’t have to be scripts: any executable

• Syntax:
JOB A a.sub

SCRIPT PRE A before-script $JOB

SCRIPT POST A after-script $JOB $RETURN

29

2012 Africa Grid School

So What?

• Pre script can make decisions

 Where should my job run? (Particularly useful to

make job run in same place as last job.)

 What should my job do?

 Generate Sub-DAG

• Post script can change return value

 DAGMan decides job failed in non-zero return value

 Post-script can look at {error code, output files, etc}

and return zero or non-zero based on deeper

knowledge.

30

2012 Africa Grid School

Quick UNIX Refresher

Before We Start

• $

• nano, vi, emacs, cat >, etc.

• module, scp, cp, watch, cat, ls,
rm

31

2012 Africa Grid School

Let’s try it out!

• Exercises with DAGMan.

32

2012 Africa Grid School

Questions?

• Questions? Comments?

• Feel free to ask me questions now or

later:

Kyle Gross – kagross@iu.edu

Rob Quick - rquick@iu.edu

33

mailto:kagross@iu.edu
mailto:rquick@iu.edu

