

# Nuclear Physics Exploring the Heart of Matter

David Lawrence Jefferson Lab Newport News VA, USA

With slides provided by Latifa Elouadrhiri













# Photon beam and experimental area



## **The Photon Tagger**



Microscope (Coherent Peak) Scintillating fibers

um chamber

- SiPMs light sensors
- 120 readout channels

Fabrication at UConn

<u>Fixed Array (Eγ ~ 3-11.6 GeV)</u> Small scintillators

- R9800 photomultipliers

Fabrication at CUA

Thinning and testing of thin crystals

- UConn thinned a diamond to 40µm, ~25µr
- GlueX goal is 20µm



# **The GlueX Detector**







#### **BCAL: Barrel Calorimeter**

Readout:

4 X 6 + 4 X 4

16 summec cells

= 40 SiPMs per side, grouped in

BCAL design modeled after KLOE EMC

#### 48 modules (phi sectors)



BCAL module under construction. Approximately 30k plastic fibers are used in 191 layers to make one module. Pb/Sc/Glue = 37/49/14 % (by volume)



Jefferson Lab



meter module.

The iPhone is placed against

the opposing surface of the 4

#### **Forward Calorimeter**

<u>Lead Glass Calorimeter</u>

- 2800 lead glass F8-00 blocks 4x4x45cm<sup>3</sup>
- PMTs FEU84-3
- Cockroft-Walton bases

Fabricated at Indiana University

<u>Beam test with e⁻ in Hall B, 2012</u> ■ σ<sub>E</sub>/E=20% at 100 MeV – as expected











## **Charged Particle Tracking**

Central Drift Chamber (CDC): Gas mixture: ~60/40 Ar/CO<sub>2</sub> Angular Coverage: 6°-155° 3500 straw tubes r=8mm dE/dx for p < 450 MeV/c Readout: FADC-125MHz Resolution:  $\sigma_{r\phi} \sim 150 \mu m$  $\sigma_{\tau} \sim 1.5 mm$ 

0z~1.5 mm 28 layers total stereo layers: +/- 6º

#### Forward Drift Chamber (FDC):

Gas Mixture: 40/60 Ar/CO<sub>2</sub> Angular Coverage: 1º - 30º Readout:

2300 anode wires → F1TDC 10200 cathode strips → FADC-125 3 measured projections per plane Resolution: 200µm wires 200µm strips





A Forward Drift Chamber (FDC) being tested in the lab. The GlueX detector will have 4 of these custom made chambers.







The Central Drift Chamber (CDC) being constructed at Carnegie Melon University. Construction is done with the device in the vertical position, but it will be turned sideways for installation.



# **Electronics and Data Rates**

#### **Electronics**

• All digitization electronics are fully pipelined (VME64x-VXS)

- •F1TDC (60 ps, 32 ch. or 115 ps 48 ch.)
- ■125 MHz fADC (12 bit, 72 ch.)
- ■250 MHz fADC (12 bit, 16 ch.)
  - integrated into L1 trigger
- Trigger latency ~3 μs
- 3GB/s readout from front end
- 300MB/s to mass storage
- 3PB/yr to tape

Signal distribution board

Crate Trigger Processor





#### Sub-system Processor



250MHzFlash ADC

#### Global Trigger Processor



Trigger Interface





**FITDC** 







# **GlueX Data Rates**

|      | David Lawrence, Jefferson Lab |                       |               |                    |                                 |                     |
|------|-------------------------------|-----------------------|---------------|--------------------|---------------------------------|---------------------|
|      |                               | Front End<br>DAQ Rate | Event<br>Size | L1 Trigger<br>Rate | Bandwidth<br>to mass<br>Storage |                     |
| JLab | GlueX                         | 3 GB/s                | 15 kB         | 200 kHz            | 300 MB/s                        | a.<br>III.          |
|      | CLAS12                        | 0.1 GB/s              | 20 kB         | 10 kHz             | 100 MB/s                        | priv<br>com         |
| LHC  | ALICE                         | 500 GB/s              | 2,500 kB      | 200 kHz            | 200 MB/s                        | , E                 |
|      | ATLAS                         | 113 GB/s              | 1,500 kB      | 75 kHz             | 300 MB/s                        | 007 talk<br>Chapeli |
|      | CMS                           | 200 GB/s              | 1,000 kB      | 100 kHz            | 100 MB/s                        | CHEP2<br>ylvain (   |
|      | LHCb                          | 40 GB/s               | 40 kB         | 1000 kHz           | 100 MB/s                        | <b>O</b>            |
| BNL  | STAR                          | <b>50 GB/s</b>        | 1,000 kB      | 0.6 kHz            | 450 MB/s                        | *                   |
|      | PHENIX                        | <b>0.9 GB</b> /s      | ~60 kB        | ~ 15 kHz           | 450 MB/s                        | **                  |

WARNING: This table is old and some numbers are out of date

\* Jeff Landgraf Private Comm.2/11/2010

\*\* CHEP2006 talk Martin L. Purschke. current capability is









0.0)% / (0.0, 0.0)

0.5

# **Types of "Parallel" Computing**

- Nomenclature
  - Parallel vs. concurrent
  - Bit-level vs. data level
- Multi-threaded
- Multi-process
- Distributed
- Grid
- SIMD
- GPU/GPGPU
- MIC







## **Multi-threading**

• Each thread has a complete set of factories making it capable of completely reconstructing a single event

• Factories only work with other factories in the same thread eliminating the need for expensive mutex locking within the factories

• All events are seen by all Event Processors (multiple processors can exist in a program)







### SIMD = Single Instruction Multiple Data

| 297 | <pre>// Multiply a 5x1 matrix by its transpose</pre>                              |
|-----|-----------------------------------------------------------------------------------|
| 298 | <pre>inline DMatrix5x5 MultiplyTranspose(const DMatrix5x1 &amp;m1){</pre>         |
| 299 | ALIGNED_16_BLOCK_WITH_PTR(m128d, 5, p)                                            |
| 300 | m128d &b1=p[0];                                                                   |
| 301 | m128d &b2=p[1];                                                                   |
| 302 | m128d &b3=p[2];                                                                   |
| 303 | m128d &b4=p[3];                                                                   |
| 304 | m128d &b5=p[4];                                                                   |
| 305 | b1=_mm_set1_pd(m1(0));                                                            |
| 306 | b2=_mm_set1_pd(m1(1));                                                            |
| 307 | b3=_mm_set1_pd(m1(2));                                                            |
| 308 | b4=_mm_set1_pd(m1(3));                                                            |
| 309 | b5=_mm_set1_pd(m1(4));                                                            |
| 310 | <pre>return DMatrix5x5(_mm_mul_pd(m1.GetV(0),b1),_mm_mul_pd(m1.GetV(0),b2),</pre> |
| 311 | _mm_mul_pd(m1.GetV(0),b3),_mm_mul_pd(m1.GetV(0),b4),                              |
| 312 | _mm_mul_pd(m1.GetV(0),b5),                                                        |
| 313 | _mm_mul_pd(m1.GetV(1),b1),_mm_mul_pd(m1.GetV(1),b2),                              |
| 314 | _mm_mul_pd(m1.GetV(1),b3),_mm_mul_pd(m1.GetV(1),b4),                              |
| 315 | _mm_mul_pd(m1.GetV(1),b5),                                                        |
| 316 | _mm_mul_pd(m1.GetV(2),b1),_mm_mul_pd(m1.GetV(2),b2),                              |
| 317 | _mm_mul_pd(m1.GetV(2),b3),_mm_mul_pd(m1.GetV(2),b4),                              |
| 318 | _mm_mul_pd(m1.GetV(2),b5));                                                       |
| 319 | }                                                                                 |





# MIC = Many Integrated Cores

- Xeon Phi = Intel's MIC system
  - 60 cores, 1GHz on a PCIe x16 card
  - 512 bit wide vectors
  - Original project: Larrabee



- Linux variant runs on MIC card independent of host OS
  - MIC system is based on 2.4 Linux kernel
  - File system not automatically shared
    - MIC cards can be configured to mount host's filesystem via NFS
- Must use intel-provided cross-compiler to build executables
  - Could not build sim-recon because ROOT was needed
  - Could not build ROOT because libX11-devel was needed







#### **GPU = Graphics Processing Unit**

111111





# Summary

- Many hardware and software technologies are needed to perform modern particl physics experiments
  - Faster detectors
  - Faster Data Acquisition
  - Faster Computing
  - Faster Networks/Storage
- These require more and more expert knowledge and therefore, more specialization from those in the field





### **Backup Slides**



19





## Distributed Computing (Let's just call it "farms")

- large cluster of computers, housed in same location, and connected via fast LAN
- jobs run independently on single node (... or maybe not ...)
- focuses significant compute power to dedicated job
- "clouds" tend to be made up of multiples of these connected via WAN





## **Farms in the Future**

Farms will play a role in the future due to power supply and dissipation

(i.e. You can't pack too many teraflops into a small volume without burning everything up!)





#### **Offline Computing**



#### Amplitude Analysis on GPUs



| Fit Configuration               | Time to Converge<br>(seconds) |
|---------------------------------|-------------------------------|
| Single CPU                      | 150.7                         |
| Single CPU + 1 GPU              | 23.6                          |
| CPU Master +<br>4 ( CPU + GPU ) | 6.3                           |
| CPU Master +<br>I I CPU Workers | 17.8                          |

(All fits converge to the same minimum with variations in iterations of  $\pm 1-2\%$ )

#### Time for 10<sup>6</sup> Amplitude Computations (ms)

| Amplitude                   | CPU     | GPU* |
|-----------------------------|---------|------|
| Breit-Wigner                | 800     | 8    |
| Ang. Dist.<br>(D-functions) | I 5,000 | 87   |

\* includes time to copy result from GPU memory



- Computers are responsible for storing, transporting, and processing information
- All experiments gather and process information

#### Exercise: handedness

- ~10% of people are left-handed
- Theory: this is due to need for physical cooperation
- My hypothesis: Physicists need less physical cooperation so have higher percentage of lefties





## Hall D: Detector Design Parameters

| Capability               | Quantity                                        | Range                                                                |  |
|--------------------------|-------------------------------------------------|----------------------------------------------------------------------|--|
| <b>Charged particles</b> | Coverage                                        | $1^{\circ} < \theta < 160^{\circ}$                                   |  |
|                          | Momentum Resolution (5°-140°)                   | $\sigma_p/p = 1 - 3\%$                                               |  |
|                          | Position resolution                             | σ~150-200 μm                                                         |  |
|                          | dE/dx measurements                              | $20 < \theta < 160^{\circ}$                                          |  |
|                          | Time-of-flight measurements                     | $\sigma_{ToF} \sim 60 \text{ ps}; \sigma_{BCal} \sim 200 \text{ ps}$ |  |
|                          | <b>Barrel time resolution</b>                   | $\sigma_t^{\gamma} < (74 / \sqrt{E \oplus 33}) \text{ ps}$           |  |
| Photon detection         | Energy measurements                             | $2^{\circ} < \theta < 120^{\circ}$                                   |  |
|                          | LGD energy resolution (E > 60 MeV)              | $\sigma_{\rm E}/{\rm E} = (5.7/\sqrt{{\rm E} \oplus 2.0})\%$         |  |
|                          | <b>Barrel energy resolution (E &gt; 60 MeV)</b> | $\sigma_{\rm E}/{\rm E}$ =(5.54/ $\sqrt{{\rm E}}$ $\oplus$ 1.6)%     |  |
|                          | LGD position resolution                         | $\sigma_{x,y,} \sim 0.64 \text{ cm}/\sqrt{E}$                        |  |
|                          | <b>Barrel position resolution</b>               | $\sigma_z \sim 0.5 cm / \sqrt{E}$                                    |  |
| DAQ/trigger              | Level 1                                         | < 200 kHz                                                            |  |
|                          | Level 3 event rate to tape                      | ~ 15 kHz                                                             |  |
|                          | Data rate                                       | 300 MB/s                                                             |  |
| Electronics              | Fully pipelined                                 | 250 / 125 MHz fADCs, TDCs                                            |  |
| Photon Flux              | Initial: 10 <sup>7</sup> γ/s                    | Final: $10^8 \gamma/s$                                               |  |
|                          |                                                 |                                                                      |  |

## **Particle ID**

from dE/dx in chambers. Space is left in design for a future PID detector.





40 scintillators
300 ps (w/tracking)
Used for start-up





Exotic Hybrid Speci

# A single $\gamma p \rightarrow pb_1\pi$ event

#### Final state: $p \pi^+ \pi^+ \pi^- \pi^- \pi^0$













#### JANA RAM usage







#### SIMD = Single Instruction Multiple Data

- Special registers on CPU where multiple numbers can be packed and operated on simultaneously
- Also known as "vectorization"
  - gcc: "...vectorization is enabled by the flag -ftree-vectorize and by default at -O3"
- CPU vendors have their own implementations and evolutions

64bit

128

(e.g. Intel has ...)

- MMX (1997, Pentium 5)
- SSE (1999) SSE4(2006) bit
- AVX (2008)
   256 bit
- MIC/VPU







#### GPU – Example CUDA code



GPU THOUSANDS OF CORES

#### Standard C Code

```
void saxpy(int n, float a,
                                float *x, float *y)
{
    for (int i = 0; i < n; ++i)
        y[i] = a*x[i] + y[i];
}
int N = 1<<20;</pre>
```

```
// Perform SAXPY on 1M elements
saxpy(N, 2.0, x, y);
```

#### C with CUDA extensions

```
__global__
void saxpy(int n, float a,
                              float *x, float *y)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < n) y[i] = a*x[i] + y[i];
}</pre>
```

```
int N = 1<<20;
cudaMemcpy(x, d_x, N, cudaMemcpyHostToDevice);
cudaMemcpy(y, d_y, N, cudaMemcpyHostToDevice);
```

```
// Perform SAXPY on 1M elements
saxpy<<<4096,256>>>(N, 2.0, x, y);
```

cudaMemcpy(d\_y, y, N, cudaMemcpyDeviceToHost);





# **Complete Event Reconstruction in JANA**



Framework has a layer that directs object requests to the factory that completes it

> Multiple algorithms (factories) may exist in the same program that produce the same type of data objects

This allows the framework to easily redirect requests to alternate algorithms specified by the user at run time





# **Distributed Computing with JANA**

- Online systems
  - Monitoring farm (ET)
  - L3 trigger farm (ET)



- Offline systems
  - Raw data reconstruction analysis (Augenros)
  - Simulation (Open Science Grid/Auger/PBS)





#### I actory Model FACTORY **FACTORY** (algorithm) $\mathbf{v}$ NO MANUFACTUR ORDER stock **MANUFACTU** FACTORY RE STOC. PRODUCT MANUFACTUR K Data on demand = Don't do it unless you need it Conservation *Stock = Don't do it twice* of CPU





cvcles

#### **Associated Objects**



• A data object may be associated with any number of other data objects having a mixture of types

Each data object has a list of
 "associated objects" that can be
 probed using a similar access
 mechanism as for event-level object
 requests

```
vector<const DCluster*> clusters;
loop->Get(clusters);
for(uint i=0; i<clusters.size(); i++)
{
    vector<const DHit*> hits;
    clusters[i]->Get(hits);
    // Do something with hits ...
}
```



