Transverse Beam Dynamics

C. Biscari

[^0]The accelerator from the particle point of view is a sequence of
Drifts - No external fields - Particles go straight
Magnetic fields - Particles are bent according to the magnetic rigidity Electric fields - Particles go straight, gain or loose energy

Reference system

x : horizontal
y : vertical
s : longitudinal along the trajectory

Typical Magnetic Fields

2n-pole:

- Normal: gap appears in the horizontal plane
- Skew: rotate around beam axis by $\pi / 2 n$

Properties of Typical Magnets

Dipoles: used for guiding the particle trajectories
$B_{x}=0$
$B_{y}=B_{o}=$ constant
Quadrupoles: used to focus the particle trajectories
$B_{x}=G y$
$B_{y}=-G x$
$G=$ constant

Sextupoles: used to correct chromatism and non linear terms
$B_{x}=2 S x y$
$B_{y}=S\left(x^{2}-y^{2}\right)$
$S=$ constant

Lattice in an accelerator

Lattice: Sequence of magnets interleaved with drifts (used for diagnostics, vacuum pumping, Injection, extraction, etc)

The first step in calculating a lattice is to consider only the linear components of it (quadrupoles and dipoles). Non linear effects and chromatic aberration corrections will be evaluated later.
The trajectory of the reference particle (the particle with nominal energy and initial position and divergence set to zero) along the optics is calculated.
All the other beam particles are represented in a frame moving along the reference trajectory, and where the reference particle is always in the center.
Coordinate systems used to describe the motion are usually locally Cartesian or cylindrical (typically the one that allows the easiest field representation)

Remember:

$$
\begin{aligned}
\beta & \equiv \frac{v}{c}=\frac{p c}{E} \\
\gamma & \equiv \frac{1}{\sqrt{1-\beta^{2}}}
\end{aligned}
$$

momentum $p=\gamma m v$
total energy $E=\gamma m c^{2}$
kinetic energy $K=E-m c^{2}$
$E^{2}=\sqrt{\left(m c^{2}\right)^{2}+(p c)^{2}}$
Constant magnetic field: B

A charged particle $($ charge $=q$) will follow a circle of radius ρ

Lorentz force: $\quad F_{L}=q v B$
Centrifugal force: $\quad F_{\text {centr }}=\frac{\gamma m_{o} v^{2}}{\rho}$

$$
F_{L}=F_{\text {centr }}
$$

$$
B \rho=\frac{p}{q}
$$

Equations of motion

Magnetic field representation (consider only normal terms)

$$
\begin{aligned}
& B_{y}(x)=B_{0}+\frac{d B_{y}}{d x} x+\frac{1}{2!} \frac{d^{2} B_{y}}{d x^{2}} x^{2}+. . \\
& B_{x}(y)=\frac{d B_{x}}{d y} y+\frac{1}{2!} \frac{d^{2} B_{x}}{d y^{2}} y^{2}+. .
\end{aligned}
$$

Concentrate in horizontal motion: only vertical fields

$$
g=\frac{d B_{y}}{d x}, \quad g^{\prime}=\frac{d g}{d x} \quad \text { Gradient and its derivative }
$$

Let's normalize to momentum

$$
\frac{B_{y}(x)}{p / e}=\frac{B_{0}}{B_{o} \rho}+\frac{g x}{p / e}+\frac{1}{2!} \frac{e g^{\prime}}{p / e}+\cdots
$$

Equations of motion

Consider only linear terms:

$$
\frac{B(x)}{p / e}=\frac{1}{\rho}+k x \quad \text { where } \quad k=\frac{g}{p / e}=\frac{1}{B \rho} \frac{d B_{y}}{d x}
$$

In the ideal orbit, $\rho=$ const $d \rho / d t=0$
General trajectory: $\rho=\rho+x$, with $x \ll \rho$

$$
F=m \frac{d^{2}}{d t^{2}}(x+\rho)-\frac{m v^{2}}{x+\rho}=q B_{y} v
$$

Since $\mathrm{x} \ll \rho \quad$ Taylor expansion $\frac{1}{x+\rho} \approx \frac{1}{\rho}\left(1-\frac{x}{\rho}\right)$

$$
\begin{gathered}
\frac{d^{2}}{d t^{2}}(\rho)=0 \\
m \frac{d^{2} x}{d t^{2}}-\frac{m v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=q B_{y} v \\
m \frac{d^{2} x}{d t^{2}}-\frac{m v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=q v\left\{B_{0}+x \frac{\partial B_{y}}{\partial x}\right\}
\end{gathered}
$$

Equations of motion

Pass from t to s as independent variable

$$
\begin{gathered}
\frac{d x}{d t}=\frac{d x}{d s} \frac{d s}{d t} \\
\frac{d^{2} x}{d t^{2}}=\frac{d}{d t}\left(\frac{d x}{d s} \frac{d s}{d t}\right)=\frac{d}{d s}\left(x^{\prime} v\right) \frac{d s}{d t} \\
=x^{\prime \prime} v^{2}+\frac{d x}{d s} \frac{d v}{d s} v
\end{gathered}
$$

Second term is zero

$$
x^{\prime \prime} v^{2}-\frac{v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=\frac{q v B_{0}}{m}+\frac{q v x g}{m}
$$

Divide by v^{2}

$$
\begin{gathered}
x^{\prime \prime}-\frac{1}{\rho}+\frac{x}{\rho^{2}}=\frac{B_{0}}{p / q}+\frac{x g}{p / q} \\
x^{\prime \prime}-\frac{1}{\rho}+\frac{x}{\rho^{2}}=-\frac{1}{\rho}+k x \\
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}-k\right)=0
\end{gathered}
$$

For vertical plane

$$
\begin{gathered}
\frac{1}{\rho^{2}}=0, k=-k \\
y^{\prime \prime}+k y=0
\end{gathered}
$$

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}-k\right)=0
$$

$$
y^{\prime \prime}+k y=0
$$

Solution of equations of motion

Putting
Horizontal : $K=\frac{1}{\rho^{2}}-k$
Vertical $: K=k$

If K is constant we get the differential equation of harmonic oscillator with spring constant K

$$
\begin{gathered}
x^{\prime \prime}+K x=0 \\
x(s)=a_{1} \cos (\omega s)+a_{2} \sin (\omega s) \\
\omega=\sqrt{K} \\
\text { At } s=0 \Rightarrow x=x_{0}, x^{\prime}=x_{0}^{\prime}
\end{gathered}
$$

(where now x can represent both x or y)

$$
\begin{aligned}
a_{1}=x_{0} & a_{2}=\frac{x_{0}}{\sqrt{K}} \\
& x(s)=x_{0} \cos (\sqrt{K} s)+x^{\prime}{ }_{0} \frac{1}{\sqrt{K}} \sin (\sqrt{K} s) \\
& x^{\prime}(s)=-x_{0} \sqrt{K} \sin (\sqrt{K} s)+x_{0}^{\prime} \cos (\sqrt{K} s)
\end{aligned}
$$

Matrix formalism

We can write the equations in matrix formalism: coordinates at point s_{1} can be obtained knowing the coordinates at s_{0}

$$
\begin{gathered}
\binom{x}{x^{\prime}}_{s_{1}}=M\binom{x}{x^{\prime}}_{s_{0}} \\
M=\left(\begin{array}{cc}
\cos (\sqrt{K} L) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} L) \\
-\sqrt{K} \sin (\sqrt{K} L) & \cos (\sqrt{K} L)
\end{array}\right)
\end{gathered}
$$

Example: Drift

Length: L
$K=0$

$$
M_{D r i f t}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)
$$

$$
\begin{gathered}
x_{1}=x_{0}+L x_{0}^{\prime} \\
x_{1}^{\prime}=x_{0}^{\prime}
\end{gathered}
$$

Matrix formalism

Focusing quadrupole:
Length $L, K>0$

$$
\begin{gathered}
M=\left(\begin{array}{cc}
\cos (\sqrt{K} L) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} L) \\
-\sqrt{K} \sin (\sqrt{K} L) & \cos (\sqrt{K} L)
\end{array}\right) \\
x_{1}=x_{0} \cos \sqrt{K} L+\frac{x^{\prime}{ }_{0}}{\sqrt{K}} \sin \sqrt{K} L \\
x_{1}^{\prime}=-x_{0}^{\prime} \sqrt{K} \sin \sqrt{K} L+x^{\prime}{ }_{0} \cos \sqrt{K} L
\end{gathered}
$$

Defocusing quadrupole:
Length $L, K<0$

$$
M=\left(\begin{array}{cc}
\cosh (\sqrt{|K| L}) & \frac{1}{\sqrt{|K|}} \sinh (\sqrt{|K|} L) \\
\sqrt{|K|} \sinh (\sqrt{|K|} L) & \cosh (\sqrt{|K|} L)
\end{array}\right)
$$

Thin lens approximation

In parallel with optics

$$
M=\left(\begin{array}{cc}
\cos (\sqrt{K} L) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} L) \\
-\sqrt{K} \sin (\sqrt{K} L) & \cos (\sqrt{K} L)
\end{array}\right)
$$

L=> 0 KL constant
$\frac{\sin (\sqrt{K} L)}{\sqrt{K} L}->1$
$f=\frac{1}{K L} \gg L$

$$
M=\left(\begin{array}{cc}
1 & 0 \\
-K L & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
\pm \frac{1}{f} & 1
\end{array}\right)
$$

f positive or negative depending on quad

Dipole

Sector magnet:

Nominal particle trajectory is perpendicular to dipole entrance Horizontal plane: $K=1 / \rho^{2}-k$ Vertical plane: $K=k$

If $k=0, L=\rho \theta$

$$
\begin{gathered}
M_{H}=\left(\begin{array}{cc}
\cos \theta & \rho \sin \vartheta \\
-\frac{1}{\rho} \sin \theta & \cos \theta
\end{array}\right) \\
M_{V}=\left(\begin{array}{cc}
1 & \rho \vartheta \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Magnet with field index: $k \neq 0$

Exercise - write the matrix

System of lattice elements: Drifts $\left(M_{D}\right)$, quads $\left(M_{Q}\right)$, bendings (or dipoles) (M_{B}) Starting with $\binom{x_{0}}{x_{0}{ }_{0}}$ The final position and divergence of the particle will be $\binom{x_{1}}{x_{1}^{\prime}}$

$$
\binom{x_{1}}{x_{1}^{\prime}}=M_{D n} \cdot M_{Q n} \cdot M_{D n-1} \cdots M_{B 1} \cdot M_{D 2} \cdot M_{Q 1} \cdot M_{D 1} \cdot\binom{x_{0}}{x_{0}^{\prime}}
$$

Or simpler

$$
\binom{x_{1}}{x_{1}^{\prime}}=M\left(s_{1}, s_{0}\right) \cdot\binom{x_{0}}{x_{0}^{\prime}}
$$

The mathematical representation of an accelerator lattice is a sequence of matrices

Twiss parameters - Betatron tune

$$
\begin{array}{cc}
x^{\prime \prime}+K x=0 & \text { If } K=\text { constant } / \text { harmonic oscillator } \\
x^{\prime \prime}+K(s) x=0 & \text { If } K \text { varies with } s \text { : Hill's equation } \\
\text { The solution of the Hill equation is given by: }
\end{array}
$$

$$
x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \left(\varphi(s)+\varphi_{0}\right)
$$

ε and φ_{0} integration constants
Inserting 1 in the equation of motion it can be shown that the phase advance is related to β by

$$
\varphi(s)=\int_{0}^{s} \frac{d s}{\beta(s)}
$$

In storage rings (length of circumference $=L$) beta is periodic

$$
\beta(s+L)=\beta(s)
$$

One complete turn: phase advance in one turn: Betatron Tune

$$
Q_{x, y}=\frac{1}{2 \pi} \oint \frac{d s}{\beta_{x, y}(s)}
$$

Solution of Hill's equation

$$
\begin{aligned}
& \alpha=-\frac{1}{2} \frac{d \beta}{d s} \\
& \gamma=\frac{1+\alpha^{2}}{\beta}
\end{aligned}
$$

$$
x=\sqrt{\varepsilon \beta} \cos \phi
$$

$$
\text { With } \phi=\varphi(s)+\varphi_{0} \text { and } \beta \text { depending on } s
$$

with

$$
\begin{aligned}
& x^{\prime}=\sqrt{\varepsilon} \frac{d \sqrt{\beta}}{d s} \cos \phi-\sqrt{\varepsilon \beta} \frac{d \phi}{d s} \sin \phi \\
& x^{\prime}=-\alpha \sqrt{\frac{\varepsilon}{\beta}} \cos \phi-\sqrt{\varepsilon \beta} \frac{d \phi}{d s} \sin \phi
\end{aligned}
$$

$x^{\prime \prime}=\sqrt{\varepsilon} \frac{d^{2} \sqrt{\beta}}{d s^{2}} \cos \phi-\sqrt{\varepsilon} \frac{d \sqrt{\beta}}{d s} \frac{d \phi}{d s} \sin \phi-\sqrt{\varepsilon} \frac{d \sqrt{\beta}}{d s} \frac{d \phi}{d s} \sin \phi-\sqrt{\varepsilon \beta} \frac{d^{2} \phi}{d s^{2}} \sin \phi-\sqrt{\varepsilon \beta}\left(\frac{d \phi}{d s}\right)^{2} \cos \phi$

Substituting in the $2^{\text {nd }}$ order equation, and equating to zero terms multipliying sin and cos we get:

$$
-2 \sqrt{\varepsilon} \frac{d \sqrt{\beta}}{d s} \frac{d \phi}{d s}-\sqrt{\varepsilon \beta} \frac{d^{2} \phi}{d s^{2}}=0
$$

Dividing by $\sqrt{\varepsilon}$ and differentiating $\sqrt{\beta}$:

$$
\begin{array}{r}
\frac{d \beta}{d s} \frac{d \phi}{d s}+\beta \frac{d^{2} \phi}{d s^{2}}=0 \\
\left(\beta \phi^{\prime}\right)^{\prime}=0 \\
\beta \phi^{\prime}=c t e=1 \\
\phi^{\prime}=\frac{1}{\beta} \quad \varphi(s)=\int_{0}^{S} \frac{d s}{\beta(s)}
\end{array}
$$

Betatron oscillations

Particles oscillate around the closed orbit, a number of times which is given by the betatron tune. The square of the β function by the emittance represents the envelope of the betatron oscillations

Amplitude of an oscillation

$$
\hat{x}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)}
$$

$\beta(s)$ represents the envelope of all particle trajectories at a given position s in a storage ring

$$
\begin{gathered}
x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \left(\varphi(s)+\varphi_{0}\right) \\
x^{\prime}(s)=-\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}}\left\{\alpha(s) \cos \left(\varphi(s)+\varphi_{0}\right)+\sin \left(\varphi(s)+\varphi_{0}\right)\right\} \\
\alpha(s)=-\frac{1}{2} \beta^{\prime}(s) \\
\gamma(s)=\frac{1+\alpha^{2}(s)}{\beta(s)}
\end{gathered}
$$

α, β and γ are the Twiss parameters

Emittance

Inserting in x^{\prime} eq.

$$
\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)
$$

ε is a constant of motion, not depending on s.
Parametric representation of an ellipse in x, X^{\prime} phase space defined by alfa, beta, gamma: Courant-Snyder invariant emittance ε For a single particle, different positions in the storage ring and different turns:

Fig. 5.2. Phase space ellipse

Drawing particle position in different points of a storage ring

alfa $=0$;
beta $=1$;
gamma = (1+alfa*alfa)/beta;
eps = 10;
for $\mathrm{i}=1$: npoints
thdeg (i) $=i^{*} 13$;
teta(i) $=$ thdeg $(\mathrm{i})^{*}$ rad;
$x(i)=\operatorname{sqrt}\left(e p s *\right.$ beta) ${ }^{*} \cos ($ teta(i));
xp(i) =-sqrt(eps/beta)*(alfa*cos(teta(i)) + sin(teta(i)));
hold on
end
grid on
plot(x,xp,'-r*')

Same area, same emittance, Different orientation

Liouville's theorem

Each particle, in absence of non conservative forces, has a constant invariant.
Under the influence of conservative forces the particle density in phase space is constant. Magnetic fields of dipoles and quadrupoles are conservative: In a beam the phase space is maintained constant

$$
\text { Beam size } \quad x_{\max }=\sqrt{\beta(s) \varepsilon} \quad x^{\prime}{ }_{\text {max }}=\sqrt{\gamma(s) \varepsilon}
$$ of Twiss Parameters

$$
\begin{gathered}
x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \left(\varphi(s)+\varphi_{0}\right) \\
x^{\prime}(s)=-\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}}\left\{\alpha(s) \cos \left(\varphi(s)+\varphi_{0}\right)+\sin \left(\varphi(s)+\varphi_{0}\right)\right\}
\end{gathered}
$$

Developing $\sin (a+b)$

$$
x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)}\left(\cos \varphi(s) \cos \varphi_{0}-\sin \varphi(s) \sin \varphi_{0}\right)
$$

$x^{\prime}(s)=-\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}}\left\{\alpha(s) \cos \varphi(s) \cos \varphi_{0}-\alpha(s) \sin \varphi(s) \sin \varphi_{0}+\sin \varphi(s) \cos \varphi_{0}+\cos \varphi(s) \sin \varphi_{0}\right\}$
Starting at $s(0)=0 \quad \varphi(0)=0 \quad \cos \varphi_{0}=\frac{x_{0}}{\sqrt{\varepsilon \beta_{0}}}, \sin \varphi_{0}=-\frac{1}{\sqrt{\varepsilon}}\left(x_{0}^{\prime} \sqrt{\beta_{0}}+\frac{\alpha_{0} x_{0}}{\sqrt{\beta_{0}}}\right)$
Substituting above

$$
\begin{gathered}
x(s)=\sqrt{\frac{\beta(s)}{\beta_{0}}}\left[\cos \varphi(s)+\alpha_{0} \sin \varphi(s)\right] x_{0}+\left[\sqrt{\beta(s) \beta_{0}} \sin \varphi(s)\right] x_{0}^{\prime} \\
x^{\prime}(s)=\frac{1}{\sqrt{\beta(s) \beta_{0}}}\left[\left(\alpha_{0}-\alpha(s)\right) \cos \varphi(s)-\left(1+\alpha_{0} \alpha(s)\right) \sin \varphi(s)\right] x_{0} \\
\quad+\sqrt{\frac{\beta(s)}{\beta_{0}}}[\cos \varphi(\mathrm{~s})-\alpha(s) \sin \varphi(s)]{x^{\prime}}_{0}
\end{gathered}
$$

Particle coordinates evolution as a function of Twiss parameters

These equations can be written under matrix formalism $\beta(s) \rightarrow \beta_{s} \alpha(s) \rightarrow \alpha_{s} \varphi(s) \rightarrow \varphi_{s}$

$$
\binom{x(s)}{x^{\prime}(s)}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left[\cos \varphi_{s}+\alpha_{0} \sin \varphi_{s}\right] & \sqrt{\beta_{s} \beta_{0}} \sin \varphi_{s} \\
\frac{1}{\sqrt{\beta_{s} \beta_{0}}}\left[\left(\alpha_{0}-\alpha_{s}\right) \cos \varphi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \varphi_{s}\right] & \sqrt{\frac{\beta_{s}}{\beta_{0}}}\left[\cos \varphi_{s}-\alpha_{s} \sin \varphi_{s}\right] x^{\prime}{ }_{0}
\end{array}\right) \cdot\binom{x_{0}}{x_{0}^{\prime}}
$$

Knowing Twiss parameters in two points and phase advance in between it is possible to define the particle position in the second point from the first one with no need of knowing the elements in between

One turn matrix

For one revolution:

$$
\beta(s)=\beta_{0} \alpha(s) \rightarrow \alpha_{0} \varphi(s) \rightarrow 2 \pi Q_{x, y}
$$

One turn matrix

$$
\mathrm{M}_{\mathrm{T}}(s)=\left(\begin{array}{cc}
\cos 2 \pi \mathrm{Q}+\alpha_{\mathrm{o}} \sin 2 \pi \mathrm{Q} & \beta_{\mathrm{o}} \sin 2 \pi \mathrm{Q} \\
-\gamma_{\mathrm{o}} \sin 2 \pi \mathrm{Q} & \cos 2 \pi \mathrm{Q}-\alpha_{\mathrm{o}} \sin 2 \pi \mathrm{Q}
\end{array}\right)=\cos 2 \pi \mathrm{Q} \cdot 1+\sin 2 \pi \mathrm{Q} \cdot \mathrm{~J}
$$

With

$$
\mathbf{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad J=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & \alpha
\end{array}\right)
$$

It can be easily demonstrated that

$$
\left|M_{T}\right|=1
$$

Knowing the one turn matrix at a certain location and the total phase advance, β and α are defined at that location

Exercise: write the expression of β and α as a function of one-turn matrix terms

N-turns Matrix

$$
M^{N}=(1 \cdot \cos 2 \pi Q+J \cdot \sin 2 \pi Q)^{N}=1 \cdot \cos 2 \pi N Q+J \cdot \sin 2 \pi N Q
$$

Motion bounded (stable) if the elements of M^{N} are bounded:

$$
|\cos 2 \pi Q| \leq 1
$$

Or

$$
\operatorname{Tr}(M) \leq 2
$$

Stability condition

Transformation of Twiss Parameters

Start from two positions, s_{o} and s

$$
\begin{gathered}
\binom{x}{x^{\prime}}=M \cdot\binom{x_{0}}{x_{0}^{\prime}} \\
M=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)
\end{gathered}
$$

Or

$$
\begin{gathered}
\varepsilon=\beta_{s} x^{\prime 2}+2 \alpha_{s} x x^{\prime}+\gamma_{s} x^{2} \\
\varepsilon=\beta_{0} x_{0}^{\prime 2}+2 \alpha_{0} x_{0} x_{0}^{\prime}+\gamma_{0} x_{0}^{2} \\
\binom{x_{0}}{x_{0}^{\prime}}=M^{-1} \cdot\binom{x}{x^{\prime}} \\
x_{0}=S^{\prime} x-S x^{\prime} \\
x_{0}^{\prime}=-C^{\prime} x+C x^{\prime}
\end{gathered}
$$

Inserting in ε and rearranging the terms on x and x^{\prime}

$$
\begin{gathered}
\beta(s)=C^{2} \beta_{0}-2 S C \alpha_{0}+S^{2} \gamma_{0} \\
\alpha(s)=-C C^{\prime} \beta_{0}+\left(S C^{\prime}+S^{\prime} C\right) \alpha_{0}-S S^{\prime} \gamma_{0} \\
\gamma(s)=C^{\prime 2} \beta_{0}-2 S^{\prime} C^{\prime} \alpha_{0}+S^{\prime 2} \gamma_{0}
\end{gathered}
$$

Transformation of Twiss Parameters

And can be written in matrix notation: given the Twiss parameters α, β, γ at any point in the lattice we can transform them and calculate their values at any other point in the ring if we know the transfer matrix.

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)=\left(\begin{array}{ccc}
C^{2} & -2 C S & S^{2} \\
-C C^{\prime} & S C^{\prime}+S^{\prime} C & -S S^{\prime} \\
C^{\prime 2} & -2 S^{\prime} C^{\prime} & S^{\prime 2}
\end{array}\right)\left(\begin{array}{l}
\beta_{o} \\
\alpha_{o} \\
\gamma_{o}
\end{array}\right)
$$

rms Emittance

The emittance is the area of the phase space occupied by all particles in a beam Each particle has its own 'invariant emittance' rms emittance represents the beam characteristics, and is defined as:

$$
\varepsilon_{x}{ }^{r m s}=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}
$$

Rms values behave the same for all distributions in linear systems Most usual beam distributions are gaussian

Emittance and beam dimensions

- The emittance is the area of the phase space occupied by the particles With the emittance and the Twiss parameters in a point of the accelerator, the beam dimensions are obtained : $\sigma_{x, y}$ e $\sigma_{x, y}^{\prime}$

$$
\varepsilon_{x}=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}
$$

Ellipse area $=\pi \varepsilon_{x}$

$$
\begin{aligned}
& \left\langle x^{2}\right\rangle=\beta_{x} \varepsilon_{x} \\
& \left\langle x^{\prime 2}\right\rangle=\gamma_{x} \varepsilon_{x} \\
& \left\langle x x^{\prime}\right\rangle=-\alpha_{x} \varepsilon_{x} \\
& \beta_{x} \gamma_{x}-\alpha_{x}^{2}=1
\end{aligned}
$$

Effect of a quad on the phase space

The phase space orientation indicates if the beam trajectories are focused or defocused (at rms values):

Example of betatron functions in a storage ring - ALBA

Emittance in linacs and transfer lines

Adiabatic damping:

The Courant-Snyder invariant emittance ε decreases if we accelerate the particle. This is called "adiabatic damping".
Particle with momentum p0:

$$
p_{0}^{2}=p_{s 0}^{2}+p_{x 0}^{2}+p_{y 0}^{2}
$$

The slope of the trajectory is

$$
z^{\prime \prime}=\frac{p_{z}}{p_{s}}(z=x \text { or } y)
$$

Accelerating the particle: p_{s} increases but p_{z} does not change

$$
z^{\prime}+\Delta z^{\prime}=\frac{p_{z}}{p_{s}+\Delta p_{s}}=\frac{p_{z}}{p_{s}\left(1+\frac{\Delta p_{s}}{p_{s}}\right)} \approx z^{\prime}\left(1-\frac{\Delta p_{s}}{p_{s}}\right)
$$

And therefore

$$
\Delta z^{\prime}=-z^{\prime} \frac{\Delta p}{p}
$$

In the phase space (z, z^{\prime}):
For each particle i: $\quad z_{i}=\sqrt{\varepsilon \beta} \cos \left(\varphi+\varphi_{0}\right)$

$$
z_{i}^{\prime}=-\sqrt{\frac{\varepsilon}{\beta}} \sin \left(\varphi+\varphi_{0}\right)
$$

The emittance of the particle is:

$$
\varepsilon=\beta z_{i}^{\prime 2}+\gamma z_{i}^{2}
$$

The change in ε applying Δz^{\prime}

$$
\Delta \varepsilon=2 \beta z_{i}^{\prime} \Delta z_{i}^{\prime}=-2 \beta z_{i}^{\prime 2} \frac{\Delta p}{p}=-2 \varepsilon \frac{\Delta p}{p} \sin ^{2}\left(\varphi+\varphi_{0}\right)
$$

Averaging over all particles:

$$
\begin{gathered}
\langle\Delta \varepsilon\rangle=-\varepsilon \frac{\Delta p}{p}=>\frac{d \varepsilon}{\varepsilon}=-\frac{d p}{p} \\
\varepsilon(p)=\varepsilon_{0} \frac{p_{0}}{p}
\end{gathered}
$$

The emittance decreases in linacs as the beam is accelerated.
Normalized emittance is defined as the invariant part:

$$
\varepsilon_{n}=\varepsilon \beta \gamma
$$

Where now β and γ are not the Twiss parameters, but: $\beta=\frac{v}{c}$ and $\gamma=\sqrt{\frac{1}{1-\beta^{2}}}$
In absence of other phenomena, the normalized emittance does not change during the acceleration

Off-Momentum Particles

Magnets are chromatic elements:

Dipoles: $\rho=\frac{p}{e B} \rightarrow \frac{\Delta \rho}{\rho_{0}}=\frac{\Delta p}{p_{0}}=\frac{\Delta \theta}{\theta_{0}}$
Quads: $K=\frac{G}{B \rho}=\frac{G e}{p}$

$$
\begin{aligned}
\Delta \theta & =-\theta_{0} \frac{\Delta p}{p_{0}} \\
\Delta K & =-K_{0} \frac{\Delta p}{p_{0}}
\end{aligned}
$$

$\Delta \mathrm{p} / \mathrm{p} \ll 1$
Off-momentum particles are not oscillating around design orbit, but around a different closed orbit (chromatic closed orbit). The displacement between the design and chromatic orbits is regulated by the dispersion function $D(s)$.
For particles with energy deviation the Hill's equation has an extra term and is not homogeneous:

$$
x^{\prime \prime}+K(s) x=\frac{1}{\rho} \frac{\Delta p}{p_{0}}
$$

The solution is the sum of the solution of the homogenous equation + a term of dispersion:

$$
x=x_{\text {Hom }}+D(s) \frac{\Delta p}{p_{0}}
$$

Dispersion equation

The dispersion equation is:

$$
D^{\prime \prime}(s)+K(s) D(s)=\frac{1}{\rho}
$$

The dispersion in a storage ring is a closed orbit.

Example: Dipole

The solution of the dispersion equation is given by the homogeneous equation solution plus a particular one of the non homogenous:

$$
\begin{gathered}
D(s)=D_{0} \cos \left(\frac{s}{\rho}\right)+D^{\prime}{ }_{0} \rho \sin \left(\frac{s}{\rho}\right)+\rho\left[1-\cos \left(\frac{s}{\rho}\right)\right] \\
D^{\prime}(s)=-\frac{D_{0}}{\rho} \sin \left(\frac{s}{\rho}\right)+D^{\prime}{ }_{0} \cos \left(\frac{s}{\rho}\right)+\sin \left(\frac{s}{\rho}\right)
\end{gathered}
$$

Or in matrix formalism, representing the particle coordinates including the energy deviation:

$$
\begin{gathered}
\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)=M_{3 x 3}\left(\begin{array}{c}
x_{0} \\
x_{0}^{\prime} \\
\Delta p / p
\end{array}\right) \\
M_{3 x 3}=\left(\begin{array}{ccc}
C(s) & S(s) & D(s) \\
C^{\prime}(s) & S^{\prime}(s) & D^{\prime}(s) \\
0 & 0 & 1
\end{array}\right) \\
M_{\text {sector }}=\left(\begin{array}{ccc}
\cos \theta & \rho \sin \theta & \rho(1-\cos \theta) \\
-\frac{1}{\rho} \sin \theta & \cos \theta & \sin \theta \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Also quadrupole focusing properties depend on particle energy: The focusing strength is

$$
K=\frac{1}{B \rho} \frac{d B}{d x}
$$

Their implication on the dispersion function is of second order

$$
k_{\Delta p}=-\frac{e}{p} G=-\frac{e}{p_{0}+\Delta p} G \approx-\frac{e}{p_{0}}\left(1-\frac{\Delta p}{p_{0}}\right) G=k_{0}-\Delta k \Rightarrow \text { error }: \Delta k=\frac{\Delta p}{p_{0}} k_{0}
$$

But they produce chromaticity

Particles with different momentum have different betatron tunes (The higher the energy the lower the tunes)
Chromatism is the spread in tune divided by the spread in momentum

$$
x_{x, y}=\frac{Q_{x, y}}{p / p}=\frac{1}{4} \sum_{i} k_{i} L_{i x, i}
$$

And is given by the sum of the contributions of all elements in the ring

Chromaticity correction

- The natural chromaticity produced by quadrupoles is always negative. β_{x} has maxima at focusing quads (QF, $k_{x}>0$) and minima at defocusing ones (QD). Horizontal chromaticity is dominated by the focusing quads, and β_{x} at their positions.
- Chromaticity must be corrected to avoid large tune spread (driving resonances or collective effects like head-tail instability)

Sextupoles placed where D is not zero, act on particles which are not on the nominal orbit, but on
$\mathrm{x}=\mathrm{x}_{0}+\mathrm{D} \Delta \mathrm{p} / \mathrm{p}$
The highest the energy deviation, the largest x, the strongest the focusing(defocusing) force

Sextupoles

- The field is quadratic :

$$
B_{x}=m x y
$$

$$
B_{y}=\frac{1}{2} m\left(\begin{array}{ll}
x^{2} & y^{2}
\end{array}\right)
$$

- Normalized gradient:

$$
m=\frac{1}{B} \frac{d^{2} B_{y}}{d x^{2}} \quad\left[m^{3}\right]
$$

- Kick:

$$
x^{\prime}=m x^{2}, \quad y^{\prime}=2 m x y
$$

Change in tune due to sextupole:

$$
Q_{x}=\frac{1}{4} \quad{ }_{x, 90} m L_{s} x \quad \text { con } \quad x=D \frac{p}{p}
$$

$$
\frac{Q_{x}}{p / p}=\frac{1}{4} \quad{ }_{x, s_{0}} m L_{s} D
$$

Chromaticity correction

- Sextupole position are chosen so that the produced chromaticity counteracts the natural one created by quadrupoles
- Mainly where the dispersion is high and β_{x} e β_{y} are well separated.
- Total chromaticity is then:

$$
x_{x}=\frac{Q_{x}}{p / p}=\frac{1}{4} \sum_{i}^{\sum_{\text {Quadrupoles }}}{ }_{x, i} k_{i} L_{q}+\frac{1}{4} \sum_{i} \uparrow_{x, i} m L_{s} D
$$

UAB

Universitat Autònom

[^0]: Charged particle and magnetic fields
 Linear approximation
 Dipoles and quadrupoles
 Lorentz equation
 Horizontal plane
 From Lorentz equation to Hill's equation
 From Hill's equation to Twiss parameter definition
 Matrix representation
 Storage ring - periodic solution
 Stability diagram
 Chromaticity
 Sextupole correction

