Universitat Autònoma

# Longitudinal beam dynamics 

C. Biscari

## Contents

- Interaction between electric fields and particles
- Principle of phase stability
- Energy-phase equations
- Synchrotron motion equations
- Small amplitudes
- Large amplitudes
- Energy acceptance


## Path length dependence

Consider two particles with different momentum on parallel trajectories

$$
p_{1}=p_{0}+\Delta p
$$

They will have non equal velocities if they are not ultrarelativistics (protons under few GeV s, electrons under few MeVs )
At a given instant the length travelled by the two particles will be:

$$
\begin{gathered}
L_{0}=\beta_{0} c t \quad L_{1}=\left(\beta_{0}+\Delta \beta\right) c t \\
\frac{\Delta L}{L_{0}}=\frac{L_{1}-L_{0}}{L_{0}}=\frac{\Delta \beta}{\beta_{0}}
\end{gathered}
$$



Introductorv CAS Praaue. Sebtember 2014
F. Tecker

## Disc loaded traveling wave structures

-When particles gets ultra-relativistic ( $\mathrm{v} \sim \mathrm{c}$ ) the drift tubes become very long unless the operating frequency is increased. Late 40's the development of radar led to high power transmitters (klystrons) at very high frequencies ( 3 GHz ).
-Next came the idea of suppressing the drift tubes using traveling waves. However to get a continuous acceleration the phase velocity of the wave needs to be adjusted to the particle velocity.

solution: slow wave guide with irises
==> iris loaded structure
Introductory CAS, Prague, September 2014
F. Tecker

## Energy gain in Linacs

The kinetic energy gain for a particle with charge e that moves in an electric field along a path $L$ is given by:

$$
\Delta W=e \int_{0}^{L} \vec{E}(\vec{r}, t) d \vec{s}=e V
$$

V is the voltage gain for the particle, depends on the particle trajectory and includes the contribution of all electric fields (rf fields, space charge, interaction with vacuum chamber,..)
Assuming a sinusoidal electric field:

$$
E_{z}=E_{0} \sin \left(\omega_{R F} t+\phi_{s}\right)
$$

The synchronous particle passes at the middle of the gap g , at time $\mathrm{t}=0$ :
The energy gain is

$$
\Delta W=e E_{0} \int_{-\frac{g}{2}}^{\frac{g}{2}} \sin \left(\omega_{R F} t+\phi_{s}\right) d z=e E_{0} \int_{-\frac{g}{2}}^{\frac{g}{2}}\left(\sin \omega_{R F} t \cos \phi_{s}+\cos \omega_{R F} t \sin \phi_{s}\right) d z
$$

Considering that
$\omega_{R F} t=\omega_{R F} \frac{z}{v}=\frac{2 \pi c}{\lambda} \frac{z}{\beta c}=\frac{2 \pi}{\beta \lambda} z \Rightarrow \Delta W=e E_{0} \sin \phi_{s} \frac{\beta \lambda}{2 \pi}\left[\sin \frac{2 \pi}{\beta \lambda}\right]_{-\frac{g}{2}}^{\frac{g}{2}}=e E_{0} \frac{\sin (\pi g / \beta \lambda)}{\pi g / \beta \lambda} g \sin \phi_{s}$

Where T is the transit time

$$
\Delta W=e V T \sin \phi_{s}
$$

$$
T=\frac{\sin (\pi g / \beta \lambda)}{\pi g / \beta \lambda}
$$



For efficient acceleration by RF fields, we need to properly match the gap length $g$ to the distance that the particle travels in one RF wavelength, $\beta \lambda$

In general

$$
T=\frac{\int_{-g / 2}^{g / 2} E(0, z) \cos \left(\omega_{R F} t\right) d z}{\int_{-g / 2}^{g / 2} E(0, z) d z}
$$

$T$ is the transit-time factor: a factor that takes into account the time variation of the field during particle transit through the gap

The cavities are spaced $L=\beta_{s} \lambda$ $\beta_{s}$ beta after cavity, $\lambda$ wavelength
The fast particle arrives at $t_{a}<t_{s}$ and gains energy $\Delta W_{a}<\Delta W_{s}$
The slow particle arrives at $t_{b}>t_{s}$ and gains energy $\Delta W_{b}>\Delta W_{s}$
The synchronous particle arrives at the synchronous phase a,b oscillate in phase (time) about the synchronous particle => synchrotron oscillation

- Energy and phase are related through the rf acceleration. The nominal particle is the one which is in phase with the rf and has the nominal energy. The variation of phase and energy with respect to the nominal ones represents the synchrotron motion

Rate of energy gain for the synchronous particle:

$$
\frac{d W_{s}}{d s}=\frac{d p_{s}}{d s}=e E_{o} \sin \phi_{s}
$$

The non synchronous particles with 'reduced' coordinates, $w$ and $\varphi$, gains

$$
\begin{gathered}
w=W-W_{s} \\
\varphi=\phi-\phi_{s}(\text { small }) \\
\frac{d w}{d s}=e E_{o}\left\lceil\sin \left(\phi_{s}+\varphi\right)-\sin \phi_{s}\right\rceil \approx e E_{o} \cos \phi_{s} \cdot \varphi
\end{gathered}
$$

And its phase changes by

$$
\frac{d \varphi}{d s}=\omega_{R F}\left[\frac{d t}{d z}-\left(\frac{d t}{d z}\right)_{s}\right]=\omega_{R F}\left(\frac{1}{v}-\frac{1}{v_{s}}\right) \cong-\frac{\omega_{R F}}{v_{s}{ }^{2}}\left(v-v_{s}\right)
$$

Since

$$
v-v_{s}=c\left(\beta-\beta_{s}\right) \cong \frac{c}{2 \beta_{s}}\left(\beta^{2}-\beta_{s}^{2}\right) \cong \frac{w}{m_{o} v_{s} \gamma_{s}^{3}}
$$

## Energy-phase oscillations

$$
\frac{d \varphi}{d s}=-\frac{\omega_{R F}}{m_{o} v_{s}^{3} \gamma_{s}^{3}} w
$$

Combining the two first order equations into a second order one:

With

$$
\begin{gathered}
\frac{d^{2} \varphi}{d s^{2}}+\Omega_{s}^{2} \varphi=0 \\
\Omega_{s}^{2}=\frac{e E_{o} \omega_{R F} \cos \phi_{S}}{m_{o} v_{s}^{3} \gamma_{s}^{3}}
\end{gathered}
$$

Stable oscillations occur if

$$
\Omega_{S}^{2}>0 \text { and real }->\cos \phi_{S}>0
$$

And since for acceleration $\sin \phi_{S}>0$

$$
0<\phi_{S}<\frac{\pi}{2}
$$



The particle trajectory in the phase space $(\Delta p / p, \phi)$ describes its longitudinal motion.


Emittance: phase space area including all the particles

## Synchrotrons - storage rings

The synchrotron is a synchronous accelerator since there is a synchronous RF phase for which the energy gain fits the increase of the magnetic field at each turn. That implies the following operating conditions:


## ALBA RF

6 RF cavities (DAMPY, designed by a EU collaboration)

- 500 MHz
- Normal conducting
- nose cone
- HOM damped
- Designed for 500 kW beam power ( 400 mA )



## Path length dependence on energy with dipoles - Storage rings

Since

$$
p=\beta \gamma m_{0} c=>
$$

$\frac{\Delta p}{p_{0}}=\gamma^{2} \frac{\Delta \beta}{\beta} \quad \frac{\Delta L}{L_{0}}=\frac{1}{\gamma^{2}} \frac{\Delta p}{p_{0}}$

$$
\begin{gathered}
\rho=\frac{p}{e B_{y}}=\frac{\beta \gamma m_{0} c}{e B_{y}} \\
\frac{L-L_{0}}{L_{0}} \propto \frac{p-p_{0}}{p_{0}} \\
\frac{\Delta L}{L_{0}}=\alpha \frac{\Delta p}{p_{0}}
\end{gathered}
$$

Alfa constant

For $\gamma \gg 1$

$$
\frac{\Delta L}{L_{0}}=\alpha \frac{\Delta p}{p_{0}} \cong \alpha \frac{\Delta E}{E_{0}}
$$

Particles with higher energies do longer paths in the sector magnet
Momentum compaction in a storage ring:

$$
\frac{d l}{d s}=1+\frac{x(s)}{\rho(s)}
$$

## Momentum compaction (in storage rings)

Let's call $\delta=\frac{\Delta p}{p_{0}}$

$$
x(s)=\delta D(s)
$$

The difference in trajectory is clearly linked to the dispersion function Integrating along the circumference C

$$
\oint_{L} d l=L+\Delta L=L+\delta \oint_{L} \frac{D(s)}{\rho(s)} d s
$$

$$
\frac{\Delta L}{L_{0}}=\alpha_{C} \delta
$$

$$
\alpha_{C}=\frac{1}{L_{o}} \int_{0}^{L_{0}} \frac{D}{\rho} d s
$$

is the momentum compaction. It measures the relative change in circumference per unit relative momentum offset. If $\alpha_{C}$ is small the different trajectories are 'packed'

## Transition Energy

Relationship with time difference:
Two particles with different momentum

$$
\begin{gathered}
\Delta t=t-t_{0}=\frac{s+\alpha_{C} \delta s}{v}-\frac{s}{v_{0}} \approx \frac{s}{v_{0}}\left(\frac{v_{0}}{v}-1+\alpha_{C} \delta\right) \\
\frac{\Delta t}{t_{0}} \approx \frac{v_{0}}{v}-1+\alpha_{C} \delta
\end{gathered}
$$

For small $\delta$

$$
v \approx v_{0}\left(1+\frac{\delta}{\gamma^{2}}\right)
$$

$$
\frac{\Delta t}{t_{0}} \approx\left(\alpha_{c}-\frac{1}{\gamma^{2}}\right) \delta=\eta_{c} \delta
$$

$\eta_{C}=$ slip factor
the energy for which the slip factor is zero is the transition energy:

$$
\frac{1}{\gamma_{t}^{2}}=\alpha_{C}
$$

During acceleration, passing through the transition energy changes the sign of the dependence on momentum dispersion of particle revolution frequency
If $v=c$

$$
\frac{\Delta t}{t_{0}} \approx \frac{\Delta L}{L_{0}}
$$

If the slip factor is zero the ring is isochronous: all particles have the same revolution frequency

## $1^{\text {st }}$ energy-phase equation

Harmonic number $h$ :

$$
f_{R F}=h f_{r}
$$

$f_{r}$ is the revolution frequency

$$
\Delta \phi=-h \Delta \theta \text { with } \theta=\int \omega_{r} d t
$$

$h$ is the maximum $n$. of bunches that can be stored in a storage ring For a given particle with respect to the reference one

$$
\Delta \omega_{r}=\frac{d}{d t}(\Delta \theta)=-\frac{1}{h} \frac{d}{d t}(\Delta \phi)=-\frac{1}{h} \frac{d \phi}{d t}
$$

Since

$$
\begin{gathered}
\eta=\frac{p_{s}}{\omega_{r s}}\left(\frac{d \omega_{r}}{d p}\right)_{s} \text { and } E^{2}=E_{o}^{2}+p^{2} c^{2} \\
\Delta E=v_{s} \Delta p=\omega_{r s} R_{s} \Delta p, \quad R_{S}=\frac{c}{2 \pi}=\frac{v_{S}}{\omega_{r s}}
\end{gathered}
$$

Then

$$
\frac{\Delta E}{\omega_{r s}}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \frac{d(\Delta \phi)}{d t}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \dot{\phi}
$$



## 2nd energy-phase equation

The particle gains energy with the rate

$$
\frac{d E}{d t}=e \hat{V} \sin \phi \frac{\omega_{r}}{2 \pi}
$$

The rate of change with respect to the reference particle is

$$
\begin{gathered}
2 \pi \Delta\left(\frac{\dot{E}}{\omega_{r}}\right)=e \hat{V}\left(\sin \phi-\sin \phi_{s}\right) \\
T_{r}=\frac{2 \pi}{\omega_{r}}=>\text { revolution time } \\
\Delta\left(\dot{E} T_{r}\right) \cong \dot{E} \Delta T_{r}+T_{r s} \Delta \dot{E}=\Delta E T_{r}+T_{r s} \Delta \dot{E}=\frac{d}{d t}\left(T_{r s} \Delta E\right)
\end{gathered}
$$

And therefore

$$
2 \pi \frac{d}{d t}\left(\frac{\Delta E}{\omega_{r s}}\right)=e \widehat{V}\left(\sin \phi-\sin \phi_{s}\right)
$$

## Equations of longitudinal motion

$$
\begin{gathered}
\frac{\Delta E}{\omega_{r s}}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \frac{d(\Delta \phi)}{d t}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \dot{\phi} \\
2 \pi \frac{d}{d t}\left(\frac{\Delta E}{\omega_{r s}}\right)=e \hat{V}\left(\sin \phi-\sin \phi_{s}\right)
\end{gathered}
$$

- Deriving and combining:

$$
\frac{d}{d t}\left(\frac{p_{s} R_{S}}{h \eta \omega_{r s}} \frac{d \phi}{d t}\right)+\frac{e \widehat{V}}{2 \pi}\left(\sin \phi-\sin \phi_{s}\right)=0
$$

## Small amplitude oscillations

For slowly varying $R_{s}, p_{s}, w_{s}$ and eta:

With

$$
\begin{aligned}
& \ddot{\phi}+\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0 \\
& \Omega_{S}^{2}=\frac{h \eta \omega_{r s} e \widehat{V} \cos \phi_{s}}{2 \pi p_{s} R_{S}} \longrightarrow
\end{aligned} \begin{aligned}
& \text { Frequency of the } \\
& \text { oscillation }
\end{aligned}
$$

For small variations from the reference particle:

$$
\sin \phi-\sin \phi_{s}=\sin \left(\phi_{s}+\Delta \phi\right)-\sin \phi_{s} \cong \varphi \cos \phi_{s}
$$

We can write $\dot{\varphi}=\dot{\phi}, \quad \ddot{\varphi}=\ddot{\phi}$
And therefore we obtain again the harmonic oscillator equation:

$$
\ddot{\varphi}+\Omega_{s}{ }^{2} \varphi=0
$$

Stable if $\Omega_{s}{ }^{2}>0$ and $\Omega_{s}$ is real
For $\quad \gamma<\gamma_{t r} \eta>0 \quad 0<\phi_{s}<\pi / 2$
$\gamma>\gamma_{t r} \eta<0 \quad \pi / 2<\phi_{s}<\pi$

## Synchrotron tune

The oscillation frequency defines the synchrotron tune $Q_{s}$ (in analogy with betatron tune) Number of oscillations in one turn

$$
Q_{s}=\sqrt{-\frac{h \eta e \hat{V} \cos \phi_{s}}{2 \pi p_{s} R_{s} \omega_{r s}}}=\sqrt{-\frac{h \eta e \hat{V} \cos \phi_{s}}{2 \pi E_{s} \beta_{s}{ }^{2}}}
$$



Fig. 6.4. Synchrotron oscillations in phase space for stable motion $\left(\Omega^{2}>0\right)$ (left) and for unstable motion ( $\Omega^{2}<0$ ) (right)

## Longitudinal emittance

The longitudinal Twiss parameter $\beta_{L}$ can be defined, analogously to transverse plane

$$
\beta_{L}=\frac{|\eta| h \lambda_{R F}}{2 \pi \beta_{s}{ }^{2} E_{S} c Q_{s}}=\frac{\lambda_{R F}}{c \beta_{s}} \sqrt{-\frac{\eta h}{2 \pi e \hat{V} E_{S} \cos \phi_{s}}}
$$

And we can write the equations of motion in matrix formalism:

$$
\binom{\Delta t}{\Delta E}_{n}=\left(\begin{array}{cc}
\cos 2 \pi n Q_{s} & \beta_{L} \sin 2 \pi n Q_{s} \\
-\frac{1}{\beta_{L}} \sin 2 \pi n Q_{s} & \cos 2 \pi n Q_{S}
\end{array}\right)\binom{\Delta t}{\Delta E}_{o}
$$

An invariant of the motion is

$$
\frac{1}{\beta_{L}}\left(\Delta t_{n}\right)^{2}+\beta_{L}\left(\Delta E_{n}\right)^{2}=\varepsilon_{L}=\text { longitudinal emittance }
$$

## Phase Stability in a Synchrotron

From the definition of $\eta$ it is clear that below transition an increase in energy is followed by a higher revolution frequency (increase in velocity dominates) while the reverse occurs above transition ( $v \approx c$ and longer path) where the momentum compaction (generally $>0$ ) dominates.


## Large Amplitude Oscillations

For large phase or energy deviations the 2nd order differential equation is non-linear:

$$
\ddot{\phi}+\frac{\Omega_{s}{ }^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0
$$

Multypling by $\dot{\phi}$ and integrating gives an invariant of the motion $I$ :

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}{ }^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=I
$$

Which for small amplitudes:

$$
\dot{\phi}^{2}+\Omega_{s}^{2}(\Delta \phi)^{2}=2 I
$$

And similar for the second variable $\Delta E$

When $\phi$ reaches $\pi-\Phi_{s}$, the force goes to zero and beyond it becomes non restoring.
$\pi-\Phi_{s}$ is an extreme amplitude for a stable motion which in the phase space ( $\dot{\phi}^{2} / \Omega_{s}, \Delta \Phi$ ) is shown as closed trajectories

The separatrix is the limit between the stable and the unstable oscillations

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}{ }^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=-\frac{\Omega_{s}{ }^{2}}{\cos \phi_{s}}\left(\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}\right)
$$

Where is zero:
$\cos \phi_{m}+\phi_{m} \sin \phi_{s}=\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}$

$\dot{\phi}$ is maximum when $\ddot{\phi}=0$, corresponding to $\phi=\phi_{s}$
Introducing this into the separatrix equation gives:

$$
\dot{\phi}_{\max }^{2}=2 \Omega_{s}^{2}\left[2+\left(2 \phi_{s}-\pi\right) \tan \phi_{s}\right]
$$

Which means energy acceptance:

$$
\begin{gathered}
\left(\frac{\Delta E}{E_{S}}\right)_{\max }= \pm \beta \sqrt{-\frac{e \hat{V}}{\pi h \eta E_{S}} G\left(\phi_{s}\right)} \\
G\left(\phi_{s}\right)=2 \cos \phi_{s}+\left(2 \phi_{s}-\pi\right) \sin \phi_{s}
\end{gathered}
$$

This rf acceptance depends on $\phi_{s}$ and is important for the beam capture at injection and the stored beam lifetime.
The higher the voltage the larger the energy acceptance

## Energy acceptance versus synchronous phase

Universitat Autònoma de Barcelona

$G\left(\phi_{s}\right)=2 \cos \phi_{s}+\left(2 \phi_{s}-\pi\right) \sin \phi_{s}$

## RF Acceptance versus Synchronous Phase



As the synchronous phase gets closer to $90^{\circ}$ the area of stable motion (closed trajectories) gets smaller. These areas are often called "BUCKET".

The number of circulating buckets is equal to " $h$ ".

The phase extension of the bucket is maximum for $\phi_{s}=180^{\circ}$ (or $0^{\circ}$ ) which correspond to no acceleration. The RF acceptance increases with the RF voltage.

- $\mathrm{C}=628 \mathrm{~m}$
- $\rho=70 \mathrm{~m}$
- $\mathrm{h}=84$
- $\alpha_{c}=0.027$
- $\eta=\alpha_{c}-1 / \gamma^{2}$
- $\mathrm{E}=$ ? GeV
- $\mathrm{f}_{\mathrm{rf}}$ ?

