Universitat Autònoma

Basic Maths and Physics for Accelerators

C. Biscari

Physical constants

Constant	Symbol	Value
Speed of light in vacuum	c	$2.9979245810^{8} \mathrm{~m} / \mathrm{s}$
Electric charge unit	e	$1.6021765310^{-19} \mathrm{C}$
Electron rest energy	$m_{e} c^{2}$	0.51099818 MeV
Proton rest energy	$m_{p} c^{2}$	938.27231 MeV
Fine structure constant	α	1/137036
Avogadro's number	A	$6.02141510^{23} 1 / \mathrm{mol}$
Classical electron radius	r_{c}	$2.817943310^{-15} \mathrm{~m}$
Planck's constant	h	$4.135667510^{-15} \mathrm{eV} \mathrm{s}$
λ of 1 eV photon	$\hbar c / e$	12398.419 A
Permittivity of vacuum	ε_{0}	$8.8541878210^{-12} \mathrm{C} /(\mathrm{Vm})$
Permeability of vacuum	μ_{0}	$1.2566370610^{-6} \mathrm{Vs} /(\mathrm{Am})$

SI measurement system

Vector calculus

Remember for example:

Gradient of a scalar function $\varphi(x, y, z, t)$

$$
\nabla \varphi=\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right)
$$

Divergence

$$
\begin{aligned}
& \nabla \times \vec{F} \\
& =\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)
\end{aligned}
$$

A vector potential is a vector field whose curl is a given vector field. A scalar potential is a scalar field whose gradient is a given vector field

Maxwell's Equations

Relate electric and magnetic fields generated by charge and current distributions Put together in 1863 results known from work of Gauss, Faraday, Ampere, Biot, Savart and others

\vec{E}	$=$ electric field
\vec{D}	$=$ electric displacement
\vec{H}	$=$ magnetic field
\vec{B}	$=$ magnetic flux density
ρ	$=$ electric charge density
\vec{j}	$=$ current density
μ_{0}	$=$ permeability of free space, $4 \pi 10^{-7}$
ϵ_{0}	$=$ permittivity of free space, 8.85410^{-12}
c	$=$ speed of light, 2.99792458 10^{8}

$$
\begin{gathered}
\nabla \cdot \vec{D}=\rho \\
\nabla \cdot \vec{B}=0 \\
\nabla \times \vec{E}=-\frac{\partial \overrightarrow{\boldsymbol{B}}}{\partial t} \\
\nabla \times \vec{H}=\vec{\jmath}+\frac{\partial \overrightarrow{\boldsymbol{D}}}{\partial t}
\end{gathered}
$$

In vacuum

$$
\vec{D}=\epsilon_{0} \vec{E}
$$

$$
\vec{B}=\mu_{0} \vec{H}
$$

$$
\epsilon_{0} \mu_{0} c^{2}=1
$$

$1^{\text {st }}$ Maxwell equation

Equivalent to Gauss's Flux Theorem, or Coulomb's Law

$$
\nabla \cdot \vec{E}=\frac{\rho}{\epsilon_{0}} \leftrightarrow \iiint_{V} \nabla \cdot \vec{E} d V=\iint_{S} \vec{E} \mathrm{~d} \vec{S}=\frac{1}{\epsilon_{0}} \iiint_{V} \rho d V=\frac{Q}{\epsilon_{0}}
$$

The flux of electric field out of a closed region is proportional to the total electric charge Q enclosed within the surface

Field generated by a point charge:

$$
\begin{aligned}
& \vec{E}=\frac{q}{4 \pi \epsilon_{0}} \frac{\vec{r}}{r^{3}} \leftrightarrow E_{r}=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{r^{2}} \\
& \iint_{\text {sphere }} \vec{E} \mathrm{~d} \vec{S}=\frac{q}{4 \pi \epsilon_{0}} \iint_{\text {sphere }} \frac{d s}{r^{2}}=\frac{q}{\epsilon_{0}}
\end{aligned}
$$

$2^{\text {nd }}$ Maxwell equation

Gauss Law for Magnetism

$$
\nabla \cdot \vec{B}=0 \quad \iint \vec{B} d \vec{S}=0
$$

The net magnetic flux out of any closed surface is zero.
Surround a magnetic dipole with a closed surface.
The magnetic flux directed inward towards the south pole will equal the flux outward from the north pole.
If there were a magnetic monopole source, this would give a non-zero integral.

The magnetic field can be derived from a vector potential \boldsymbol{A} defined by $B=\nabla \times A$.

$3^{\text {rd }}$ Maxwell equation

Relates electric field and non constant magnetic field Equivalent to Faraday's law of Induction

$$
\begin{gathered}
\nabla \times \vec{E}=-\frac{\partial \overrightarrow{\boldsymbol{B}}}{\partial t} \\
\iint_{S} \nabla \times \vec{E} \cdot d \vec{S}=-\iint_{S} \frac{\partial \overrightarrow{\boldsymbol{B}}}{\partial t} d \vec{S} \\
\oint_{C} \vec{E} \cdot d \vec{l}=-\frac{d}{d t} \iint_{S} \vec{B} \cdot d \vec{S}=-\frac{d \Phi}{d t}
\end{gathered}
$$

Faraday's Law is the basis for electric generators, inductors and transformers.

The electromotive force round a circuit is proportional to the rate of change of flux of magnetic field through the circuit.

$4^{\text {th }}$ Maxwell equation

Relates magnetic field and not constant electric field. Equivalent to Faraday's law of Induction

$$
\nabla \times \vec{H}=\vec{\jmath}+\frac{\partial \overrightarrow{\boldsymbol{D}}}{\partial t} \leftrightarrow \nabla \times\left(\frac{1}{\mu} \vec{B}\right)=\mu_{o} \vec{\jmath}+\frac{1}{c^{2}} \frac{\partial(\overrightarrow{\epsilon E})}{\partial t}
$$

From Ampere's (Circuital) Law : $\quad \nabla \times \vec{B}=\mu_{0} \vec{J}$

$$
\oint_{C} \vec{B} \cdot d \vec{l}=\iint_{S} \nabla \times \vec{B} \cdot d \vec{S}=\mu_{0} \iint_{S} \vec{J} \cdot d \vec{S}=\mu_{0} I
$$

Satisfied by the field for a steady line current (Biot-Savart Law, 182C).

$$
\vec{B}=\frac{\mu_{0} I}{4 \pi} \oint \frac{d \vec{l} \times \vec{r}}{r^{3}}
$$

Which for a straight line current

$$
\vec{B}=\frac{\mu_{0} I}{2 \pi r}
$$

Example
 The Betatron

Particles accelerated by the rotational electric field generated by a time-varying magnetic field

$$
\begin{aligned}
\oint \vec{E} \cdot \mathrm{~d} \vec{l} & =-\frac{\mathrm{d}}{\mathrm{~d} t} \iint \vec{B} \cdot \mathrm{~d} \vec{S} \\
\Rightarrow \quad 2 \pi r E_{\theta} & =-\frac{\mathrm{d} \Phi}{\mathrm{~d} t}
\end{aligned}
$$

For circular motion at a constant radius:

$$
-\frac{m v^{2}}{r}=e v B \quad \Longrightarrow \quad B=-\frac{p}{e r}
$$

$$
\Longrightarrow \frac{\partial}{\partial t} B(r, t)=-\frac{1}{e r} \frac{\mathrm{~d} p}{\mathrm{~d} t} \quad=\quad-\frac{E}{r}=\frac{1}{2 \pi r^{2}} \frac{\mathrm{~d} \Phi}{\mathrm{~d} t}
$$

$$
\Longrightarrow B(r, t)=\frac{1}{2} \frac{1}{\pi r^{2}} \iint B \mathrm{~d} S
$$

B-field on orbit needs to be one half the average B over the circle. This imposes a limit on the energy that can be achieved. Nevertheless the constant radius principle is attractive for high energy circular accelerators.

- Cross section of dipole magnet

Relativity

For the most part, we will use SI units, except

- Energy: eV (keV, MeV, etc) [1 eV = $\left.1.6 \times 10^{-19} \mathrm{~J}\right]$
- Mass: eV/c² [proton $=1.67 \times 10^{-27} \mathrm{~kg}=938 \mathrm{MeV} / \mathrm{c}^{2}$]
- Momentum: eV/c [proton @ $\beta=.9=1.94 \mathrm{GeV} / \mathrm{c}]$

$$
\begin{aligned}
\beta & \equiv \frac{v}{c}=\frac{p c}{E} \\
\gamma & \equiv \frac{1}{\sqrt{1-\beta^{2}}} \\
\text { momentum } p & =\gamma m v \\
\text { total energy } E & =\gamma m c^{2} \\
\text { kinetic energy } K & =E-m c^{2} \\
E^{2} & =\sqrt{\left(m c^{2}\right)^{2}+(p c)^{2}}
\end{aligned}
$$

Incremental relationships between energy, velocity and momentum

	$\frac{\Delta \beta}{\beta}$	$\frac{\Delta p}{p}$	$\frac{\Delta T}{T}$	$\frac{\Delta E}{E}=\frac{\Delta \gamma}{\gamma}$
$\frac{\Delta \beta}{\beta}=$	$\frac{\Delta \beta}{\beta}$	$\frac{1}{\gamma^{2}} \frac{\Delta p}{p}$	$\frac{1}{\gamma(\gamma+1)} \frac{\Delta T}{T}$	$\frac{\Delta p}{\beta^{2} \gamma^{2}} \frac{\Delta \gamma}{\gamma}-\frac{\Delta \gamma}{\gamma}$
	$\gamma^{2} \frac{\Delta \beta}{\beta}$	$\frac{\Delta p}{p}$	$\frac{\gamma}{\gamma+1} \frac{\Delta T}{T}$	$\frac{1}{\beta^{2}-1} \frac{\Delta \gamma}{\gamma}$
$\frac{\Delta T}{T}=$	$\gamma(\gamma+1) \frac{\Delta \beta}{\beta}$	$\left(1+\frac{1}{\gamma}\right) \frac{\Delta p}{p}$	$\frac{\Delta T}{T}$	$\frac{\gamma}{\gamma-1} \frac{\Delta \gamma}{\gamma}$
$\frac{\Delta E}{E}=$	$(\beta \gamma)^{2} \frac{\Delta \beta}{\beta}$	$\beta^{2} \frac{\Delta p}{p}$	$\left(1-\frac{1}{\gamma}\right) \frac{\Delta T}{T}$	$\frac{\Delta \gamma}{\gamma}$
$\frac{\Delta \gamma}{\gamma}=$	$\left(\gamma^{2}-1\right) \frac{\Delta \beta}{\beta}$	$\frac{\Delta p}{p}-\frac{\Delta \beta}{\beta}$		

$$
\beta=\frac{v}{c} \quad \beta=1 \longrightarrow \text { Particle at light velocity } c
$$

Electrons are ultrarelativistic at few MeV
Protons at few GeV (mass ~2000 times electron mass)

Electrodynamic Potentials

We can write the electric and magnetic fields in terms of Vector and Scalar potentials

$$
\begin{aligned}
\vec{B} & =\vec{\nabla} \times \vec{A}(\vec{r}, t) \\
\vec{E} & =-\vec{\nabla} \phi-\frac{\partial \vec{A}}{\partial t}
\end{aligned}
$$

$$
\begin{aligned}
\vec{F}=e(\vec{E}+\vec{v} \times \vec{B})=\frac{d \vec{p}}{d t} & =m \frac{d \vec{v}}{d t} ; \quad \text { for } v \ll c \\
& =\frac{d \vec{p}}{d t} ; \quad \text { relativistically correct }
\end{aligned}
$$

Lorentz's Force

Particle dynamics are governed by the Lorentz force law

$$
\begin{aligned}
& \vec{F}=q(\vec{E}+\vec{v} \times \vec{B}) \\
& \vec{F}=m \frac{d \vec{v}}{d t} \quad \text { for } v \ll c \\
& \vec{F}=\frac{d \vec{p}}{d t} \quad \text { for any } v
\end{aligned}
$$

The magnetic force always acts at right angles to the charge motion, the magnetic force can do no work on the charge. The B-field cannot speed up or slow down a moving charge; it can only change the direction in which the charge is moving.

The component of velocity of the charged particle that is parallel to the magnetic field is unaffected, i.e. the charge moves at a constant speed along the direction of the magnetic field.
Negatively charged particles circulate in the opposite direction as positively charged particles.
The direction can be found using the right hand rule applied to the perpendicular component of the velocity

MAGNETIC PISCUSSION

Motion in constant electric field

$$
\begin{aligned}
& \frac{d\left(m_{o} \gamma \vec{v}\right)}{d t}=\mathrm{q} \vec{E} \\
& \gamma \vec{v}=\frac{q \vec{E}}{m_{o}} t \\
& \gamma^{2}=1+\left(\frac{\gamma \vec{v}}{c}\right)^{2} \\
& \gamma=\sqrt{1+\left(\frac{q \vec{E} t}{m_{o} c}\right)^{2}}
\end{aligned}
$$

If the electric field is constant:

$$
\vec{E}=(E, 0,0)
$$

It can be demonstrated that

$$
m_{o} c^{2}(\gamma-1)=q E\left(x-x_{o}\right)
$$

Uniform acceleration in straight line

Motion in a constant magnetic field

- A charged particle moves in circular arcs of radius ρ with angular velocity ω :

$$
\begin{aligned}
& \vec{F}=\frac{d \vec{p}}{d t}=\frac{d}{d t}(\gamma m \vec{v})=\gamma m \frac{d \vec{v}}{d t}=q \vec{v} \times \vec{B} \\
& \vec{v}=\vec{\omega} \times \vec{\rho} \Rightarrow q \vec{v} \times \vec{B}=\gamma m \vec{\omega} \times \frac{d \vec{\rho}}{d t}=\gamma m \vec{\omega} \times \vec{v} \\
& q v B=\frac{\gamma m v^{2}}{\rho} \\
& \omega=\frac{v}{\rho}=\frac{q B}{\gamma m}
\end{aligned}
$$

Example: Cyclotron (1930's)

Universitat Autònom

- A charged particle in a uniform magnetic field will follow a circular path of radius

$$
\begin{aligned}
\rho & =\frac{m v}{q B} \quad(v \ll c) \\
f & =\frac{v}{2 \pi \rho} \\
& =\frac{q B}{2 \pi m}(\text { constant }!!) \\
\Omega_{s} & =2 \pi f=\frac{q B}{m}
\end{aligned}
$$

For a proton:
$f_{C}=15.2 \times B[T] \mathrm{MHz}$

top view

Accelerating "DEES"

Rigidity
 Relation between radius and momentum

$$
B \rho=\frac{p}{q}
$$

How hard (or easy) is a particle to deflect?

- Often expressed in [T-m] (easy to calculate B)
- Be careful when $q \neq e$!!

$$
B \rho[T m] \approx 3.33 \frac{p\left[\frac{G e V}{c}\right]}{q[e]}
$$

$$
\begin{gathered}
E_{o}=0.511 \mathrm{MeV} \text { or } 938.27 \mathrm{MeV} \\
E_{\text {tot }}=E_{\text {kin }}+E_{o} \\
\gamma=\frac{E_{\text {tot }}}{E_{o}}, \beta=\sqrt{1-\frac{1}{\gamma^{2}}} \\
p=\beta E_{\text {tot }}
\end{gathered}
$$

$$
B \rho=3.3310^{-3} p
$$

Energia $[\mathrm{MeV}]$	p	e^{-}
	0,14	0,005
1	0,44	0,035
10	1,45	0,34
100	5,66	3,34
1.000	36,35	33,36
10.000	336	336
100.000	3335	3335
1.000 .000		

Kinetic energy per nucleon: $E_{k i n}$
Total charge $=Q e$

$$
\begin{gathered}
E_{e}=0.511 \mathrm{MeV} \quad E_{p}=938.27 \mathrm{MeV} \quad E_{n}=939.57 \mathrm{MeV} \\
N_{e}, Z, N \Rightarrow A=\text { Atomic mass }(Z+N) \\
E_{o}=Z E_{p}+N E_{p}+N_{e} E_{e}-A * 0.8 \\
E_{t o t}=A E_{k i n}+E_{o} \\
\gamma=\frac{E_{\text {tot }}}{E_{o}}, \beta=\sqrt{1-\frac{1}{\gamma^{2}}} \\
p=\beta E_{\text {tot }} \\
B \rho=3.3310^{-3} p / \mathrm{Q}
\end{gathered}
$$

Example: particle spectrometer

Identify particle momentum by measuring bending angle from a calibrated magnetic field B

Simplified Particle Motion

Design trajectory

- Particle motion will be expanded around a design trajectory or orbit
- This orbit can be over linacs, transfer lines, rings

Separation of fields: Lorentz force

- Magnetic fields from static or slowly-changing magnets transverse to design trajectory
- Electric fields from high-frequency RF cavities in direction of design trajectory
- Relativistic charged particle velocities

Others

Universitat Autònoma

1 rcurs

- Mec ànic a i Relativitat
- Electricitat i Magnetisme
- Química per a Físics
- Ones i Òptica
- Càlcul I
- Calcul II
- Àlgebra I
- Àlgebra II
- Temes de Ciència Actual
- Iniciació a la Física Experimental
$2 n$ curs
- Estructura de la Matèria i Termodinàmica
- Mètodes Numèrics I
- Mecànica Clàssica
- Electromagnetisme
- Laboratori de Mecànica
- Laboratori d'Electromagnetisme
- Equacions Diferencials
- Càlcul de Vàries Variables
- Complements de Matemàtiques

Specially:

Calcul

Matrix formalism
Differential equations
Electromagnetism
Special relativity
Waves and Optics

References

- Particle Accelerator Physics - Helmut Wiedemann, Third Edition, Springer
- Cern Accelerator School (CAS)
(http://cas.web.cern.ch/cas/) , including links to other schools
- U.S. Particle Accelerator School (USPAS) (http://uspas.fnal.gov/)
- Find the velocity in terms of c of an electron at 3 GeV (ALBA), of a proton at 250 MeV (CNAO) and at 6.5 TeV (LHC)
- Derive the expression of the relationship between momentum and energy change

$$
\frac{d p}{p}=\frac{1}{\beta^{2}} \frac{d E}{E}
$$

