Charge collection and trapping effects in n- and p-type epitaxial silicon diodes after proton irradiation

Jörn Lange, Julian Becker, Eckhart Fretwurst, Gunnar Lindström Hamburg University

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung 14<sup>th</sup> RD50 Workshop, Freiburg, June 2009



In the framework of the CERN RD50 Collaboration

## Introduction

- Trapping: most limiting factor at S-LHC fluences
  - Usually described by an effective trapping time constant τ<sub>eff</sub>:
  - Previous measurements\* for FZ/Cz material at low fluences:

$$\begin{split} \textbf{N(t)} &= \textbf{N}_{0} \; \textbf{exp}(-\frac{\textbf{t}}{\tau_{\text{eff}}}) \\ & \frac{1}{\tau_{\text{eff}}} = \beta \; \Phi_{\text{eq}} \end{split}$$

- \*cf. G.Kramberger's PhD thesis
- What happens in epitaxial material, at high fluences and high voltages?
- Last RD50 workshop (Nov 08): Results for n-type EPI diodes presented
  - Time-resolved TCT signals (670nm laser) for 150µm EPI
  - CCM  $\rightarrow \beta_e$  in EPI similar to FZ/Cz material
  - CCE ( $\alpha$ ) >1  $\rightarrow$  avalanche effects
  - CCE simulation underestimates measurements  $\rightarrow$  modified trapping description needed
- Here:
  - Update for further fluence points
  - p-type investigated (τ<sub>eff</sub>, CCE (α))
  - Comparison of CCE for different charge injection distributions (670nm, 1060nm,  $\alpha$ )



Ш

Ĥ

#### **Overview on investigated diodes**

- Epitaxial Si pad-detectors on Cz-substrate produced by ITME/CiS
- Size: 5 x 5 mm<sup>2</sup> and 2.5 x 2.5 mm<sup>2</sup>
- n-type: 75 μm, 100 μm and 150 μm thickness; Standard (ST) and oxygen enriched (DO, diffusion for 24h at 1100°C) material
- p-type: only 75 µm ST material
- 24 GeV/c-proton-irradiation (CERN PS),  $\Phi_{eq} = 1 \times 10^{14} 1 \times 10^{16} \text{ cm}^{-2}$

| Material     | d     | Wafer     | Orientation | N <sub>off</sub> 0                  | [0]                                  | Oxygen Concentration Depth Profile of EPI 75µm |
|--------------|-------|-----------|-------------|-------------------------------------|--------------------------------------|------------------------------------------------|
|              | [µ m] |           |             | [10 <sup>12</sup> cm <sup>-3]</sup> | [10 <sup>16</sup> cm <sup>-3</sup> ] |                                                |
| n-EPI ST 75  | 74    | 8364-03   | <111>       | 26                                  | 9.3                                  | 6 75 ST                                        |
| n-EPI DO 75  | 72    | 8364-07   | <111>       | 26                                  | 60.0                                 | • 75 DO                                        |
| n-EPI ST 100 | 102   | 261636-05 | <100>       | 15                                  | 5.4                                  |                                                |
| n-EPI DO 100 | 99    | 261636-01 | <100>       | 15                                  | 28.0                                 | Succession of the second                       |
| n-EPI ST 150 | 147   | 261636-13 | <100>       | 8.8                                 | 4.5                                  |                                                |
| n-EPI DO 150 | 152   | 261636-09 | <100>       | 8                                   | 14.0                                 | EPI layer ← Cz substrate                       |
| p-EPI ST 150 | 149   | 271713-26 | <100>       | 13                                  |                                      |                                                |

#### **TCT electron signals (n-type)**



3 June 2009, 14th RD50 Workshop, Freiburg

븸

#### TCT hole signals (p-type)



3 June 2009, 14th RD50 Workshop, Freiburg

UН

븸

# Determination of $\tau_{eff}$

Results from Charge Correction Method:

 Also in Epi: If assumed to be constant at each fluence, trapping probability found to be fluence-proportional

$$\frac{1}{\tau_{\text{eff,e/h}}} = \beta_{\text{e/h}} \Phi_{\text{eq}}$$

 Damage parameter β: similar values as in FZ\*

UН

\*cf. G.Kramberger's PhD thesis



|           | n-type                                                          | p-type                                                          |
|-----------|-----------------------------------------------------------------|-----------------------------------------------------------------|
|           | $\beta_{e} \left[ 10^{-16}  \text{cm}^2 \text{ns}^{-1} \right]$ | $\beta_{h} \left[ 10^{-16}  \text{cm}^2 \text{ns}^{-1} \right]$ |
| EPI-ST    | 5.3 ± 0.4                                                       | 7.4 ± 0.9                                                       |
| EPI-DO    | $4.5 \pm 0.5$                                                   |                                                                 |
| EPI comb. | $5.0 \pm 0.3$                                                   | $7.4 \pm 0.9$                                                   |
| cf. FZ*   | 5.1                                                             | 6.5                                                             |

### **CCE** as a function of bias voltage



Almost saturation for low fluences at high voltages

υн

闬

 n-type: Stronger increase for high fluences (avalanche effects) p-type: approximately linear increase for Φ<sub>eq</sub>≥2.7x10<sup>15</sup> cm<sup>-2</sup>

### **CCE as a function of fluence**



- CCE degrades with fluence, but deceleration at high fluences (due to avalanche effects?)
- CCE improves for decreasing thickness as t<sub>c</sub> decreases (smaller distance, higher field)
- No significant difference between ST and DO material

υн

闬

• CCE of p-type lower than CCE of n-type ( $v_{dr}$  and  $\tau_{eff}$  smaller for holes)

## Comparison CCE (670nm, 1060nm laser, $\alpha$ )



UН

- Different charge injection distributions:
  - 5.8MeV α: range 26µm; well-defined charge deposition → small normalisation error (~3%)
  - 670nm:  $\lambda_{abs}=3\mu m$ ; laser intensity variations  $\rightarrow$  larger normalisation error (up to 10%)
  - 1060nm :  $\lambda_{abs}=1mm$ ; laser intensity variations  $\rightarrow$  larger normalisation error (up to 10%)
- Simulation with τ<sub>eff</sub>=const underestimates measured data in all cases; voltage-dependent behaviour not well reproduced
- But relative position between CCE of different distributions well reproduced
- U-dependent  $\tau_{eff}$  fits better:

$$\tau_{eff,e} = \tau_0(U_{dep}) + \tau_1 \frac{(U - U_{dep})}{100V}$$

# Comparison CCE (670nm, 1060nm laser, $\alpha$ )



- Smaller penetration depth → stronger charge multiplication (more charge deposited in high-field region; more e instead of h)
- CCE(670nm)- and IV-curves almost identical at high voltages (for 75µm, 10<sup>16</sup>cm<sup>-2</sup>)

υн

## Summary

- 670nm laser: time-resolved TCT signals in Epi 150µm
  - n-type: no type inversion; p-type: type inversion for  $\Phi_{eq} \ge 3.7 \times 10^{14} \text{ cm}^{-2}$
  - Double Junction already at low fluences in p-type
  - CCM -> trapping probability similar to FZ
- CCE determination:
  - CCE<sub>e,n-type</sub>>CCE<sub>h,p-type</sub>
  - Avalanche effect strongest for small penetration depth (CCE>7 for 75µm!)
- Comparison CCE measurements simulation
  - Simulation underestimates measurements for all charge injection distributions
  - Relative position between different charge injection distributions well reproduced
  - Better agreement if U-dependent  $\tau_{eff}$  assumed

# **BACKUP SLIDES**

Ш

# Depletion Voltage (from CV at 10 kHz)

Stable Damage:



## **New Laser-TCT Setup**



υн

# **Alpha-TCT Setup**



UН

# **Simulation details**

Integrated induced charge for e-h pair deposited at  $x_0$  (e + h contribution):

$$Q_{x_0} = \frac{Q_{0,x_0}}{d} \left[ \int_{x_0}^d \exp\left(-\frac{t(x)}{\tau_{eff,e}}\right) dx - \int_{x_0}^0 \exp\left(-\frac{t(x)}{\tau_{eff,h}}\right) dx \right] \quad \text{with} \quad t(x) = \int_{x_0}^x \frac{1}{v_{dr} \left(E\left(x'\right)\right)} dx$$

Drift velocity parameterisation (C.Jacobini, Sol.State El., Vol. 20, 1977):

| $v_{dr} = \frac{\mu_0 E}{\left(1 + \left(\frac{\mu_0 E}{v_{sat}}\right)^\beta\right)^{1/\beta}}$ | with | $\begin{array}{rcl} \mu_{0,e} &= \\ v_{sat,e} &= \\ \beta_{e} &= \end{array}$  | $\begin{array}{l} 1.51\times 10^9 \cdot T^{-2.42} \frac{cm^2}{Vs} \\ 1.53\times 10^9 \cdot T^{-0.87} \frac{cm}{s} \\ 2.57\times 10^{-2} \cdot T^{0.66} \end{array}$ | $\Rightarrow$<br>$\Rightarrow$<br>$\Rightarrow$ | $\begin{array}{ll} 1605.4 \frac{cm^2}{Vs} & \text{ at } 294K \\ 1.09 \times 10^7 \frac{cm}{s} \\ 1.09 \end{array}$ |
|--------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                                                                                  |      | $\begin{array}{rcl} \mu_{0,h} & = \\ v_{sat,h} & = \\ \beta_h & = \end{array}$ | $\begin{array}{l} 1.31 \times 10^8 \cdot T^{-2.2} \frac{cm^2}{Vs} \\ 1.62 \times 10^8 \cdot T^{-0.52} \frac{cm}{s} \\ 0.46 \cdot T^{0.17} \end{array}$              | ${\Rightarrow} {\Rightarrow}$                   | $486.3 \frac{cm^2}{Vs}$<br>$0.84 \times 10^7 \frac{cm}{s}$<br>1.21                                                 |

Linear electric-field approximation:

$$E(x) = \frac{1}{d} \left[ U_{dep} \left( \frac{2x}{d} - 1 \right) - U \right], \qquad U \ge U_{dep}$$

Integration over all positions where e-h pairs were created:

UН

Ĥ

$$Q_{total} = \int_0^d Q_{x_0} dx_0$$

Charge deposition as a function of detector depth  $Q_{0,x0}$  calculated by SRIM for 5.8 MeV  $\alpha$ -particles

Creation of e-h Pairs as a Function of Detector Depth



## **Comparison: Simulation ↔ Measured data**

**n-type,** α

υн

闬



- Simulation with const.  $\tau_{eff}$  underestimates measured data (even if  $v_{dr} = v_{sat}$  assumed everywhere  $\Rightarrow v_{dr}(E)$  and E(x) model uncertainties are not the reason)
- Possible Reasons: avalanche effects (only at high U, Φ), detrapping, non-const. τ<sub>eff</sub> (variable cross section? non-const. occupation, e.g. due to trap filling at high I<sub>rev</sub>?)
- First try: voltage-dependent  $\tau_{eff}^* \Rightarrow$  good fits possible

\* cf. L.Beattie NIM A 421 (1999), 502

## Results from U-dependent $\tau_{eff}$ fit of CCE(U)

$$\tau_{eff,e} = \tau_0(U_{dep}) + \tau_1 \frac{(U - U_{dep})}{100V}$$

UН