Prediction of the macroscopic "reverse annealing" using microscopic defect concentrations

D. Eckstein¹ E. Fretwurst¹ <u>A. Junkes</u>¹ G. Lindström¹ I. Pintilie^{1,2}

> ¹Institute for Experimental Physics University of Hamburg, Germany

²NIMP Bucharest-Magurele, Romania

14th RD50 workshop, 3-5 June 2009, Freiburg

UHI

2/13

 $\substack{1\times10^{15}\,\text{n/cm}^2\\000}$

summary o

Motivation - defect engineering

Aim: Passivation of defects with impact on sensor properties

 \rightarrow knowledge about defects needed

Impact on N_{eff}:

- defects charged at RT have impact
- 0 charged defects do not contribute
- acceptors contribute with (-) to SC
- donors contribute with (+) to SC

UHI

3/13

 $2 \times 10^{14} \text{ n/cm}^2$

 $\substack{1\times 10^{15} \text{ n/cm}^2\\000}$

summary o

Influence of detected defects on N_{eff}

delopment of N_{eff} for EPI-DO after neutron and proton irradiation

TSC results after neutron and proton irradiation

- SCSI after neutrons but not after protons
- donor generation enhanced after proton irradiation
 - microscopic defects explain macroscopic effect at low Φ_{eq}

 $2 \times 10^{14} \text{ n/cm}^2$

 $1 \times 10^{15} \text{ n/cm}^2$

summary 0

Previous results

$\Phi_{eq} = 5 \times 10^{13} \text{ cm}^{-2} \text{ neutrons}$ $\Phi_{eq} = 2 \times 10^{14} \text{ cm}^{-2} \text{ protons}$

I. Pintilie, et al., to be published.

I. Pintilie, et al., to be published.

- acceptor generation dominates
- reverse annealing can be explained by deep acceptor traps

microscopic results predict macroscopic findings!

UН

- donor generation enhanced relative to acceptor traps
- donor generation partly compensates acceptors

Temperature (K)

I. Pintilie, et al., to be published.

real breakthrough in understanding radiation damage

6/13

Annealing time at 80 °C (min)

I. Pintilie, et al., to be published.

 $\substack{1\times10^{15}\,\text{n/cm}^2\\000}$

summary 0

New Results

$\Phi_{eq} = 2 \times 10^{14} \text{ cm}^{-2} \text{ neutrons}$

A. Junkes, 14th RD50 workshop

 $\underset{\circ}{\overset{1\times10^{14} \text{ n/cm}^2}{\text{southermal annealing 2}}} \xrightarrow{1\times10^{15} \text{ n/cm}^2}_{\circ \circ \circ} \xrightarrow{\text{summar.}}$

• short term annealing well described

∪нн

8/13

microscopic results predict macroscopic findings!

 $2 \times 10^{14} \text{ n/cm}^2$

 $1 \times 10^{15} \text{ n/cm}^2$

summary o

Isothermal annealing 2×10^{14} n/cm²

- $\bullet\,$ short term annealing deviates $\rightarrow\,$ still not fully understood
- reverse annealing explained by microscopic defects at this fluence

 $\substack{2\times 10^{14} \text{ n/cm}^2\\000}$

 $1\times10^{15}\,\text{n/cm}^2$

summary o

Increase of irradiation to

$\Phi_{eq} = 1 \times 10^{15} \text{ cm}^{-2} \text{ neutrons}$

introduction 2 × 10 ¹⁴ n/cm² 1 × 10 ¹⁵ n/cm² sum 00000 000 0●0 0	nary

increase of the fluence to 1×10^{15} n/cm²

- type inversion between $\Phi_{eq} = 2 \times 10^{14} \text{ cm}^2$ and $\Phi_{eq} = 1 \times 10^{15} \text{ cm}^2$
- field distribution inside the diode?
 → double junction

effect

UHI

- obtained concentration of acceptors very high!
- evaluation very difficult due to high electrical field and double junction effect
- still more work needed!

UHI

- obtained concentration of acceptors very high!
- evaluation very difficult due to high electrical field and double junction effect
- still more work needed!

∪нн

introduction	

summary

- real breakthrough in understanding radiation damage
- microscopic defects explain macroscopic findings for non-type-inverted diodes
- still some open questions for type-inverted diodes

outlook

- improve evaluation for highly irradiated sensors
- annealing study of $\Phi_{eq} = 1 \times 10^{15} \text{ cm}^{-2} \text{ protons}$

