

Neutron Irradiation for P-type Sensors. Detector Characterization with ALIBAVA system

<u>U.Soldevila</u>¹, M.Miñano¹, C. García¹, C.Lacasta¹, S. Martí i García¹, R.Marco-Hernández¹

(1) Instituto de Física Corpuscular, IFIC (CSIC-UVEG), Valencia, Spain

14th RD50-Workshop on Radiation hard semiconductor devices for very high luminosity colliders

3-5 June 2009

Outline

- I. Fabrication process
- II. P-type µstrip detectors irradiated with neutrons
- III. Setup (ALIBAVA system)
- IV. Detectors (IV-QV)
- V. Microdischarges
- VI. Summary

I. Fabrication Process

Detectors have been fabricated in the Clean Room facility of CNM-IMB

- Rd50 Mask
 - > Designed by the RD50 Collaboration
 - > Double side processing
 - > One metal layer
- Structures
 - > 26 microstrips detectors
 - Polysilicon biasing resistors
 - Capacitive coupling
 - P-spray insulation
 - No p-stops
 - > 20 pad detectors
 - > 12 pixel detectors
 - > 8 test structure sets

II. P-type µstrip detectors irradiated with neutrons

- Area: 1x1 cm²
- 130 strips, width: 32 μ m
- Pitch: 80 μm
- Thickness: 300 μm
- Multiple guard ring
- Surface isolation: p-spray

Wire bonding

Pich adaptors Wire bonding

FLUENCES

$$1X10^{14} n/cm^2$$
 $3x10^{14} n/cm^2$
 $1x10^{15} n/cm^2$
 $3x10^{15} n/cm^2$

Urmila Soldevila (IFIC, Valencia)

14th RD50-Workshop

□ FZ, MCz substrates to evaluate

I MeV equivalent neutron irradiation at TRIGA nuclear reactor in Ljubljana, Slovenia.

No annealing (except while wire bonding,~2h)

III. ALIBAVA system

Compact and portable system consisting of:

- > Mother Board (MB):
 - Controls the hardware part
 - Processes de trigger signals and the н. analogue data
 - Communicates with a PC via USB
- Daughter Board (DB)
 - Two Beetle chips in parallel mode
 - 256 input channels (128 per chip)
 - 3 types of pitch adaptors (multiple wire bonding up to 100)

III. How to use the ALIBAVA system

□ Laser measurements:

- Laser synchronization (laser delay in ns)
- > Laser run and data analysis
 - (calibration and pedestals applied)

□ Radioactive source (⁹⁰Sr) measurements:

- Final Collected Charge-Bias Voltage curves
 made with the laser setup. Measurements with the beta setup are only necessary for a few bias voltage. They are used to calibrate the laser beam.
 Trigger configuration (one or two PM's, threshold ...)
- Normalization to 24ke⁻ (in order to compare with other measurements)

IV. Detectors

We have measured three different wafers

- > Two with n-on-p sensors
- > One with n-on-n sensor to compare

Each wafer has sensors irradiated with neutrons at different doses

Туре	Wafer	Non-irradiated	10 ¹⁴ (n/cm²)	3x10 ¹⁴ (n/cm ²)	10 ¹⁵ (n/cm²)
n-on-n FZ	W17	S24	S01	S02	S03
n-on-p FZ	W04	S08	S01	S02	S03
n-on-p MCZ	W10	S21	\$15	S16	- S17

- \square : we could not read out any signal
- : we could not normalise the measurements with the corresponding non irradiated sensor

IV. Detectors: Wafer 17 (n-on-n FZ) (-25°C)

8/14

IV. Detectors: Wafer 04 (n-on-p FZ) (-25°C)

- Microdischarges have been observed in these detectors during the measurements in our setup
- □ They appear as high signal peaks.

 $\hfill\square$ Microdischarges can represent a problem for the beetle chip. They can burn it.

□ They can have both polarities.

S02-W04 (irradiated 3x10E14)

S24-W17 (non-irradiated)

S08-W04 (non-irradiated)

□ At higher fluences, the microdischarges appear later

Microdischarge Voltage (V)						
Fluence (n/cm2)	Wafer 04 (n-on-p FZ)	Wafer 17 (n-on-n FZ)				
0	170	230				
1x10 ¹⁴	250	390				
3x10 ¹⁴	270	400				
1x10 ¹⁵	330	400				

VI. Summary

- N-on-N and N-on-P microstrip silicon sensors have been measured and characterized in terms of their neutron radiation damage with the ALIBAVA system.
- Measurements limited by massive microdischarges
 - > We need to understand Microdischarges
 - > This problem comes from our setup? from the detectors?
 - > Does anyone else see microdischarges with these kind of sensors?
 - What is the maximum rate we can tolerate without worrying about electronics and/or sensors?

- Thank you -

- Backup -

Urmila Soldevila (IFIC, Valencia)

14th RD50-Workshop

III. How to use the ALIBAVA system

□ Correction factors:

Q_{cal} is the collected charge in electrons with the calibration (ADC/electrons conversion)