Evaluation of novel pixel sensor for future tracking detector

A. La Rosa and H. Pernegger CERN PH

14th RD50 Workshop - Freiburg, June 3-5, 2009

Pixel Sensors RD at Cern

Studies of different detector materials for (very) high radiation

Close collaboration between CERN group on ATLAS upgrade, sensors RD groups (RD50, RD42) and CERN PH-DT (SLHC-PP / WP4 – Rad. Hard Detector).

Interests in the following specific areas:

- 1. Performance evaluation of different sensor types with the sLHC front-end electronics (*The interface sensors to electronics*)
- 2. Characterization of sensor <u>before & after</u> irradiation in Lab with sLHC front-end electronics (using currently the ATLAS FE-I3 pixel chip)
- 3. Test beams with different sensor types.

Collaboration:

ATLAS RD on 3D-Si Detectors (since Sept. 08)

Currently measure ATLAS layout 3D Stanford and 3D FBK/irst detectors

ATLAS RD on Planar sensors (since Feb.09)

Measurements on "standard" N-in-N detectors, N-in-P /thin next

ATLAS RD on CVD Diamond pixel detector (since Feb. 08)

Measurements on single-crystal single-chip module.

CERN Participants:

B. Di Girolamo, D. Dobos, A. La Rosa, H. Pernegger, S. Roe 6/5/09 A. La Rosa / CERN PH-DT

Detectors Under Test

<u> 3D-Si</u>

FBK/irst: Double side Double Type Columns (DDTC) Stanford: Full 3D sensors

Diamond Pixel Sensors

pCVD(full module) and scCVD (single chip module)

Looking forward to testing **N-in-P/ thin Planar** Pixel Sensors

As reference: ATLAS N-in-N Planar sensors

On bench measurements:

- Started to do measurements on different detectors:
 - Leakage currents
 - Threshold scan (threshold and noise measurements)
 - Noise vs bias voltage
 - Source test with Am-241, Cd-109 and Sr90

FBK 3D Silicon sensors

Double side Double Type Columns

6/5/09

Structure with 2,3 and 4 elect. per pad Thickness 220um Column overlap ~ 100 um Depletion voltage ~ 11V

•Bump-bonding \rightarrow SELEX S.I. (Indium).

•22 devices have been bump-bonded.

•9 of 22 3D sensors have been flip-chipped on ATLAS FE-I3.

M. Boscardin, C. Piemonte (FBK-irst), G.F. Dalla Betta (UniTN & INFN-TN), G. Darbo (INFN-GE).

A. La Rosa / CERN PH-DT

The Atlas Pixel chip: FEI3

Overall chip architecture:

-Standard 0.25um CMOS technology -2880 readout cells of 50um x 400um -18x160 matrix -Radiation tolerance up to a total dose of 50Mrad

Each readout cell:

<u>Analog block</u> where the sensor charge is amplified and compared to a programmable threshold by a discriminator;

<u>Digital readout</u> part transfers the hit pixel address, a hit time stamp and a digitized amplitude information, the ToT to buffers at the chip periphery.

Preamplifier and discriminator shape:

Time over Threshold (length of discriminator signal) depends on:

- deposited charge
- discriminator threshold
- feedback current

Information of the ToT (in unit of 25 ns) is read out together with the hit information

Leakage currents

Noise vs bias voltage

Measurements at CERN setup (climate chamber) 20 °C and relative humidity of 12%.

Threshold and noise measurements

FE Tuned with Th=3k2e- and 60 ToT @ 20ke-

sensor	<th></th> <th>σ(th)</th> <th><noise></noise></th> <th>σ(noise)</th> <th>HV</th>		σ(th)	<noise></noise>	σ(noise)	HV
FBK-2E	3200	58.6	202.3	8.96	-35	
FBK-3E	3318	42.02	206.6	8.29	-35	
FBK-4E	3284	41.27	229.8	9.87	-35	
N-in-N	3259	42.96	181.1	9.367	-150	

Source tests

Preliminary measurement with Am-241 and Cd-109

See the expected 60 keV (Am241) and 22 keV (Cd109) peaks

Source test (Am-241)

Preliminary measurement with Am-241 source in comparison with ATLAS N-in-N Planar sensor single-chip module

Peak (10⁴ e) Sigma (e) Detector 695.3 3D-2EM2 1.411 3D-2EM6 1.401 673.6 3D-3EM5 1.414 686.2 3D-3EM7 1.537 778.4 3D-4EM3 1.406 759.0 3D-4EM8 1.383 775.2 3D-4EM9 1.415 760.0 Planar (N-in-N) 1.501 688.4

See the expected 60keV peak

Spectrum as a sum over all pixel without any clustering

Source test (Cd-109)

Preliminary measurement with Cd-109 source in comparison with ATLAS N-in-N Planar sensor single-module

Spectrum as a sum over all pixel without any clustering

See the expected 22keV peak

Source test (Sr90)

Measurements at CERN setup (climate chamber) 20 °C and relative humidity of 18%.

Contribution to measurements: J.W. Tsung/Bonn

During test 6 mm

Sr90 independently triggered

To check if the charge collected changes with the electric field three different bias voltages have been chosen (-15V, -35V and -55V).

Bias Voltage	MPV	Sigma	
[V]	[Ke]	[Ke]	
-15	13.66	1.522	
-35	14.21	1.505	
-55	14.11	1.495	

Depletion voltage @ ~-11V

Test-beam overview

In the framework of ATLAS 3D Collaboration two FBK/irst sensors have been tested:

- **DDTC-1**: *N-in-P, 220 um thick substrate, Non- passing-through columns (100um) No active edge.*

- **DDTC-2** : *N-in-P, 200 um thick substrate, Non- passing-through columns (180um) No active edge.*

CERN SPS – H8 DUTs : - Traditional PPS - STA-3E (full 3D) - FBK-3E (100um overlap) - FBK-3E (180um overlap)

Angle scan (0 and 15) w/ & without magnetic field (~2T)

Test-beam overview

In the framework of ATLAS 3D Collaboration: FBK/irst (DDTC-1) 3E-type sensor

JUST FEW PICS from DQM during data taking !!!

Correlation: BAT vs FBK/irst

Hit Map

Data analysis on all sensors tested is on-going !!!!

3D-Si: next step

FBK-DDTC3:

N-in-P, 250 um thick substrate, FULL 3D sensors (passing-through) columns No active edge

CNM (G. Pellegrini et al.):

Double side 3D detector, 300 um thick substrate and 200um column overlap

✓ Lab Characterization
✓ Test Beam (October 2009)
✓ Sensor Irradiation (Aug-Sept)
- Proton: CERN IRRAD3 (4x10¹⁵ p/cm²)
[FBK, Planar N-in-N
Other sensors are welcome]

sc-CVD Diamond

Outlook

- The performance of the 3D-Si (FBK/irst DDTC-1) have been studied
 - 9 detectors have been tested: one of them (3EM1) has showed problem in IV scan (breakdown ~ -10V), while one (2EM4) has presented problems in the FE calibration.
 - Many thanks to M. Boscardin, G.F. Dalla Betta, C. Piemonte and G. Darbo for their kind cooperation in the detector understanding and measurements.
- Study of detector behavior in terms of noise and threshold
 - Using the same setups
 - Before and after irradiation
 - Warm and cold measurements
- Started on 3D Silicon and scCVD Diamonds detectors in ATLAS pixel pad geometry
 - Lab measurement with source (Am-241, Cd-109 and Sr-90)
 - Test-beams
- Plan to expand measurements to planar sensors (different bulk material, also thin sensors)