

Charge Collection Efficiencies of Planar Silicon Detectors after Reactor Neutron, Pion and Proton Doses up to 2.2×10¹⁶ n_{eq} cm⁻²

> A. Affolder, P. Allport, G. Casse University of Liverpool

Purpose of this Study

- Investigate the radiation hardness with respect to charge collection for the different implant configurations and silicon bulk materials available
 - FZ vs. MCz bulk
 - n-type vs. p-type bulk
 - n-strip vs. p-strip readout
- Determine which technology is best for the various regions of a SLHC upgrade
 - Using dominant damage source (charged/neutrals)
 - Charged irradiations from multiple sources needed to give the complete picture

Fluence in Proposed sATLAS Tracker

ATLAS Radiation Taskforce http://atlas.web.cern.cn/Atlas/GROUPS/PHYSICS/RADIA HON/Radiation IF_document.html

Design fluences for sensors (includes 2x safety factor) :B-layer (R=3.7 cm): $2.5 \times 10^{16} n_{eq}/cm^2 = 1140$ Mrad 2^{nd} Inner Pixel Layer (R=7 cm): $7.8 \times 10^{15} n_{eq}/cm^2 = 420$ Mrad 1^{st} Outer Pixel Layer (R=11 cm): $3.6 \times 10^{15} n_{eq}/cm^2 = 207$ MradShort strips (R=38 cm): $6.8 \times 10^{14} n_{eq}/cm^2 = 30$ MradLong strips (R=85 cm): $3.2 \times 10^{14} n_{eq}/cm^2 = 8.4$ Mrad

Need to study response to <u>both</u> neutral (neutrons) and charged (proton) particle irradiations

Miniature Silicon Micro-strip Sensors

Microstrip, ~1x1 cm², 100-128 strips, 75-80 μ m pitch, ~300 μ m thickness

Micron/RD50 (4" & 6" wafers)

Detector designed and produced within RD50 framework RD50 mask (see: <u>http://rd50.web.cern.ch/rd50/</u>)

- •n-in-p FZ (V_{FD} ~15V/~70 V) •n-in-p MCz (V_{FD}~550 V)
- •n-in-n FZ (V_{FD}~10 V) •n-in-n MCz (V_{FD}~170 V)
- •p-in-n FZ (V_{FD} ~10V) •p-in-n MCz (V_{FD} ~170 V)

Micron/VELO test structures

•n-in-n FZ ($V_{FD} \sim 70V$)

Irradiation Sources

Irradiation and dosimetry (Neutrons): Triga Reactor, Jozef Stefan Institute, Ljubljana, Slovenia: <u>V. Cindro, et. al.</u>

Irradiation and dosimetry (24 GeV Protons): CERN PS Irrad1 facility, Geneva Switzerland: <u>M. Glaser, et. al</u>.

Irradiation and dosimetry (26 MeV Protons): Compact Cyclotron, Karlsruhe, Germany: <u>W. de Boer, A. Dierlamm, et. al.</u>

Irradiation and dosimetry (280 MeV/c Pions): Paul Scherrer Institut, Switzerland: <u>M. Glaser, T. Rohe, et. al.</u>

Experimental Setup

- Charge collection efficiency (CCE) measured using an analogue electronics chip (SCT128) clocked at LHC speed (40MHz clock, 25ns shaping time).
 - Measurements performed in chest freezer at a temperature of ~-25 °C with N₂ flush
- ⁹⁰Sr fast electron source triggered with scintillators in coincidence used to generate signal.
- The system is calibrated to the most probable value of the MIP energy loss in a non-irradiated 300µm thick detector (~23000 e⁻).

Neutron Comparison

From previous studies we know:

- After ~5×10¹⁴ n cm⁻², n-in-n FZ, n-in-p FZ, n-in-p MCz very similar
- At higher voltage, n-in-n MCz superior up to maximum fluence (10¹⁵ n cm⁻²)
 - Need higher fluence data to determine if this continues
- p-in-n shows inferior performance as expected

Dominant source of damage at radii >30 cm

Appears once trapping dominates, all n-strip readout choices studied are the same after neutron irradiation

Charged Irradiation Sources

- 280 MeV Pions
 - ✓ Dominant source inside 20 cm
 - × Low momenta
 - **×** Low total dose (<1 $10^{15} n_{eq} \text{ cm}^{-2}$)
 - Annealing during irradiation Environment ~24 C
- 24 GeV Protons
 - X Not the dominant source of damage
 - High energy charged particles
 - Higher flux, higher total dose
 - Long Irradiations
 - Flux: 1-2 10¹³ cm⁻² h⁻¹
 - Limited periods during the year
 - Annealing during irradiation
 - Environment ~30 C

- Not the dominant source of damage
- ✗ Low energy
- Extremely high flux/total dose
 - Flux: 1-3 10¹⁵ cm⁻² h⁻¹
- ✓ Easy access
- No/little annealing during irradiation

Need to combine information from all 3 sources. Confirm hardness factors at low fluence with pions and extend to highest fluences

Pion Irradiations

Significant annealing during irradiation For highest doses, 13 days at 24 C°

Pion Summary

For the limited fluences achievable, p-in-n MCz similar to n-strip readout. p-in-n FZ detectors would not be acceptable anywhere in the SLHC trackers

Warm 24 GeV Proton Irradiations

Limited number of devices studied for far

Proton Hardness Comparison

- After hardness correction, IV and CCE agree for both cooled irradiations sources (24 GeV CERN PS and 26 MeV Karlsruhe) with n-in-p FZ devices
 - Roughly ±10% error in fluence at CERN, ±20% error at Karlsruhe, ±0.5 C° error in temperature during measurement
- Gives indication the low energy protons can be used for radiation tolerance studies

26 MeV Proton Irradiations

p-in-n

- MCz better than FZ
- Insufficient CCE for tracking >10×10¹⁴ n cm⁻²

n-in-n

- MCz similar to FZ for piece measured
- <u>Charge seen after</u>
 <u>2.2×10¹⁶ n_{eq} cm⁻²</u>

n-in-p

- FZ and MCz similar response
- <u>Charge seen after</u>
 <u>2.2×10¹⁶ n_{eq} cm⁻²</u>

p-in-n sensors: FZ–black, MCz-red

 $\frac{Charge \ seen \ with \ n-strips \ after \ 2.5 \times 10^{16} \ n_{eq} \ cm^{-2}}{(expected \ maximum \ dose \ of \ innermost \ devices \ at \ SLHC)}$

26 MeV Proton Summary

- All n-strip readout devices give similar results
 - Need low fluence data to see if V_{FD} effects significant
- p-in-n shows inferior performance as expected

Appears once trapping dominates, all n-strip readout choices studied are the same after 26 MeV protons irradiation as well

p-in-n FZ Irradiation Summary

p-in-n MCz Irradiation Summary

n-in-p FZ Irradiation Summary

Results after neutron, pion, and proton irradiations are very similar •Pions and 24 GeV protons have significant annealing

Charge collected may be sufficient at inner-most layer of SLHC upgrades

n-in-p FZ Irradiation Summary (II)

After reducing the pion CCE by estimated annealing factor, all sources give consistent CCE vs. fluence within uncertainties

n-in-p MCz Irradiation Summary

n-in-n FZ Irradiation Summary

n-in-n MCz Irradiation Summary

Study limited by part availability

There are signs that it might be the most radiation hard material, especially after mixed irradiations. Much more study is needed.

Radiation Hardness Measurements

- To complete these irradiation comparisons, a new round of radiation hardness measurements need to be made
 - Diodes at each site with careful measurement of environmental conditions
 - PT100 in diodes during measurements
 - Annealing to a standard time correcting for annealing that occurred during irradiation
 - 80 minutes at 60 C??

Conclusions

- Various detector configurations and bulk material types have been studied after neutron, pion, and proton irradiations
- p-in-n FZ/MCz devices are not radiation tolerant enough for the inner regions of the SLHC
- After neutron, pion, and proton irradiations, n-in-n FZ, n-in-p FZ, and n-in-p MCz are very similar at high fluences
 - There are indications that n-in-n MCz might be better but needs further study
- All n-strip readout devices have sufficient CCE for even the inner-most SLHC layers

 Higher bias voltages, better cooling & lower threshold electronics are needed!!

• Studies of annealing properties and mixed irradiations are next.

23

Backup Slides

Wafer Technology Choices

- Float Zone (FZ)
 - Most experience
 - Relatively low initial V_{FD} (20-150V)

- Magnetic Czochralski (MCz)
 - More oxygen
 - More rad. hard??
 - Less uniformity in resistivity within wafer??
 - Less expensive??
 - Higher initial V_{FD} (150-700 V)

P-strip vs. N-strip Readout

Holes collected

strips

Deposited charge can reach electrode

Reality is more complex, but dominant Charge spread over r junction is located near n⁺ implant

Lower signal

Depth

p-in-n MCz Irradiation Summary

p-in-n FZ Irradiation Summary

p-in-n FZ is poor as expected. Differences between sources not understood

Double Junction

See G. Casse, et. al., NIMA **426** (1999) 140-146 and G. Kramberger, et. al., NIMA **579** (2007) 762-765 for details

Geometry Choices

Oxygenation RD48

- Oxygenation shown to reduce damage due to protons
 - No improvement seen to the increase in |Neff| with neutron irradiations

Motivates looking at naturally high oxygen content bulk materials (Cz, MCz, EPI)

Current SLHC ATLAS Layout

Barrel Pixel Tracker Layers:r = 3.7cm, 7.5cm, 16cm, 20cmShort Strip (2.4 cm) μ -strips (stereo layers):r = 38cm, 49cm, 60cmLong Strip (9.6 cm) μ -strips (stereo layers):r = 75cm, 95cm

(400 collisions per beam crossing)

Neutron Irradiations

- p-in-n
 - MCz slightly better than FZ
 - Insufficient CCE
 for tracking
 >5-10×10¹⁴ n cm⁻²
- n-in-n
 - MCz much better than FZ
 - Higher dose MCz data needed
- n-in-p
 - FZ/MCz similar response
 - <u>Charge seen after</u>
 <u>1.5×10¹⁶ n cm⁻²</u>

p-in-n sensors: FZ–black, MCz-red