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Purpose of this Study

* |Investigate the radiation hardness with respect to
charge collection for the different implant
configurations and silicon bulk materials available

— FZ vs. MCz bulk
— n-type vs. p-type bulk
— n-strip vs. p-strip readout

« Determine which technology is best for the various

regions of a SLHC upgrade

— Using dominant damage source (charged/neutrals)

« Charged irradiations from multiple sources needed to give the
complete picture
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Fluence In Proposed sATLAS Tracker

. / A ancp o NN fh-1 -
Strip length and T ——— Mix of neutrons,
segmentation 1 H. Sadrozinski PRttt protons, pions
determined by 1E+6 | & § proton _ depending on
occupancy< 2%, [|°& radius R
reliminar T 1E+5 |
b Y 2 * Long and short
Long S ol - | strips damage
Strips R i largely due to
_ neutrons
Short 1.E+13
Strips :
& 1_E+12\H.|. | SR N PR R /S N S /A Pixels damage
Pixels 0 20 40 60 80 100 120 due to neutrons
B Radius R [cm] and pions
ATLAS Radiation Taskforce http://atlas.weDb.cern.ch/Atlas/GROUPS/PH Y RADIATION/Radiation TF_document.html
Design fluences for sensors (includes 2x safety factor) :
B-layer (R=3.7 cm): 2.5%10%6 n /cm? = 1140 Mrad Need to study response

24 Inner Pixel Layer (R=7 cm): 7.8x10%n,/cm? =420 Mrad | to both neutral (neutrons)
15 Quter Pixel Layer (R=11 cm): 3.6x10% n,,/cm? = 207 Mrad and charged (proton)
Short strips (R=38 cm): 6.8x10% n,,/cm? = 30 Mrad particle irradiations

Long strips (R=85 cm): 3.2x10% n ,/cm? = 8.4 Mrad
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Miniature Silicon Micro-strip Sensors

Microstrip, ~1x1 cm2, 100-128 strips, 75-80 !
Um pitch, ~300um thickness :

Micron/RD50 (4” & 6” wafers)

Detector designed and produced within RD50 framework

RD50 mask (see: hitp://rd50.web.cern.ch/rd50/)
n-in-p FZ (Vgp ~15V/~70 V) *n-in-p MCz (V,~550 V)
*n-in-n FZ (Vgp~10 V) *n-in-n MCz (Vgp~170 V)
*p-in-n FZ (Vg ~10V) *p-in-n MCz (V5 ~170 V)

Micron/VELO test structures
*n-in-n FZ (Vg ~70V)

A. Affolder — RD50, 3rd-5th June 2009, Freiburg, Germany 4



Irradiation Source

Irradiation and dosimetry (Neutrons):
Triga Reactor, Jozef Stefan Institute,
Ljubljana, Slovenia: V. Cindro, et. al.

Irradiation and dosimetry (26 MeV Protons):
Compact Cyclotron, Karlsruhe, Germany:
W. de Boer, A. Dierlamm, et. al.

Irradiation and dosimetry (24 GeV Protons):

CERN PS Irrad1 facility, Geneva Switzerland:

M. Glaser, et. al.

Irradiation and dosimetry (280 MeV/c Pions):
Paul Scherrer Institut, Switzerland:
M. Glaser, T. Rohe, et. al.
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Experimental Setup

« Charge collection efficiency
(CCE) measured using an
analogue electronics chip
(SCT128) clocked at LHC speed
(40MHz clock, 25ns shaping
time).

— Measurements performed in

chest freezer at a temperature of
~-25 °C with N, flush

« 90Gr fast electron source
triggered with scintillators in
coincidence used to generate
signal.

 The system is calibrated to the
most probable value of the MIP
energy loss in a non-irradiated
300um thick detector (~23000 e").
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Neutron Comparison

From previous studies we Dominant source of damage at radii >30 cm
know:
o After ~5x10%4 n cm2, - ' ' T T
n-in-n FZ n-in-pkFZ, | 900 V 1
n-in-p MCz very \
similar ?
« At higher voltage, 7-9? o i
n-in-n MCz superior (_g;
up to maximum 5
fluence (1015 n cm'z) E .| [T nin-nFZ(RDSO) g“l\{l_' 1
— Need higher S aminpter s
fluence data to L i F7 14 kb
determine if this Presented at RESMDDOS, to be published in NIM A
continues . ‘ ' E———
e p-in-n shows inferior Fluence (10" n,, em™)
performance as Appears once trapping dominates, all n-strip readout
expected choices studied are the same after neutron irradiation
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Charged Irradiation Sources

e 280 MeV Pions e 26 MeV Protons
v" Dominant source inside 20 cm X Not the dominant source of
X Low momenta damage
X Low total dose (<1 105 n., cm?) X Low energy
X Annealing during irradiation v Extremely high flux/total dose
Environment ~24 C * Flux: 1-3 10 cm2h?
e 24 GeV Protons v Easy access
% Not the dominant source of damage * Nol/little annealing during
v High energy charged particles Irradiation
v" Higher flux, higher total dose
X Long Irradiations Need to combine information from
* Flux: 1-2 10* cm* h all 3 sources. Confirm hardness
X Limited periods during the year factors at low fluence with pions
® Annealing during irradiation and extend to highest fluences

e Environment ~30 C
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Pion Ilrradiations

o p-in_n 25 — T |
— MCz significantly - t—3—1
better than FZ 20 |- ) . ./I;!%fi P
. .. N a— 1 — L _—
— FZ insufficient - t f/ 1
CCE for tracking % 5} i
>5x10™ n,, cm? &
O
* n-ln_p E o ——1.6x10" nem™ n-in-p FZ I
— MCz better than § ! I‘.‘Iéjiilﬁfiiﬂfﬂifﬂiﬁ i
FZ as expected T a4 210" nom® minp MCs i
n-in-p sensors: FZ —black, MCz-red -=-65x10"xcm” n-in-p MCz
0 L i 1 i 1 i 1 | |
0 200 400 600 800 1000 120(
Bias Voltage (V)
Significant annealing during irradiation
For highest doses, 13 days at 24 C°
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Pion Summary

25 y T - T ' T - T y T ' T

20 |- -
©
==
q) 15 - =
S
@©
i
o
b 10 |- -
*8' - -A - p-in-n MCz
Qo —B— p-in-n FZ
o 0 :
O L - -A - n-in-p MCz i

—mEl—n-in-p FZ 14 KQ cm
O | 1 | L | 1 | 1 | 1 | L |

1 2 3 4 5 6 7 8
Fluence (‘IO14 N, cm'2)

For the limited fluences achievable, p-in-n MCz similar to n-strip readout.
p-in-n FZ detectors would not be acceptable anywhere in the SLHC trackers
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Warm 24 GeV Proton Irradiations

25 1 I L] I 1 I L] I L] I L]
L % % i % { = ox10” n,, cm” n-in-p FZ
— 14 -2 .
E —— /i 0 12x10 n_cm™ n-in-p FZ
20 | -~ ; 1 W !
/ I } ¢ 3x10 n, cm” n-in-p FZ
. - % i L o 66x10“n_cm” n-in-p FZ
O 1 1 eq
== 15 % 1 = i A 12x10"n . cm” n-in-p FZ
8] B T - e
o i T x %/J- A 1.6x10°n . cm’” n-in-p FZ
1 i e
g B E % T L/i 1 e 3.1x10" n., cm” n-in-p FZ
- 10 L % A é . | —e—3.0x10" n., cm” n-in-n FZ
A )
2 5 4 / - i/ —e—3.0x10" n_ cm” p-in-n FZ
}) - hd e i"’"ﬂ- / . 14 2.
= 5 i/ /6 —0—6x10 " n_cm” p-in-n FZ
O 5 kL Q 4 —o—e6x10" n. cm’” p-in-n MCz
—A—12x10" n,, cm’” p-in-n MCz
0 i | 1 | i | i | 1 | i
0 200 400 600 800 1000 1200

Bias Voltage (V)

Limited number of devices studied for far
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Proton Hardness Comparison

® 9.3e15neqcm-2 24 GeV ¢ 93e15neqcm-2 24 GeV

10 T [ T I T l T 200 Ll l Ll I Ls I T I l
- ®  7el15neqcm-2 y Ti = 7e15 neqcm-2
8 I 4 160 |

Charge Collected (ke)
I
I
——H——1
——H——
" 1 " "
Current (uA
(03]
o
I T T
———
——t —
—e———
—e—
1

2r B 2 ] I Corrected to -25 C°
: - L 8 1x1 cm? area
0 " 1 . 1 " 1 " 0 " 1 " | " | 1 | A 1
600 800 1000 0 200 400 600 800 1000
Voltage (V) Voltage (V)

« After hardness correction, IV and CCE agree for both cooled irradiations
sources (24 GeV CERN PS and 26 MeV Karlsruhe) with n-in-p FZ devices

— Roughly £10% error in fluence at CERN, £20% error at Karlsruhe,
+0.5 C° error in temperature during measurement

» Gives indication the low energy protons can be used for radiation
tolerance studies
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26 MeV Proton Irradiations

p = i n = n 25 ! | ! | ! I ! | ! I ! 1 ! I
- M CZ better than FZ I I/+ -m-7x10" n_ cm  n-in-p FZ
.. 20 | /l - - 7x10" N cm'j n-in-p FZ
— Insufficient CCE for : I et
. — : %% L+ 3x10 T“ cm r.nl-ln-p Fz
traC kl n g 'g T/ITI/—‘ fj?:;[)] n. cr: ‘ n-in-::ZFZ
= 1 <7x107 n_ cm” n-in-p
>1OX1014 n Crn_2 %J) F T/S/ ¥-16x10" n_ em” n-in-p FZ
[l L T 7-2.2x10" n, cm *n-in-p FZ
n - i n - n g n I‘é/i/g/ /;/I/ %% -5%10™ :“ em’” r:nl-inip Fz
ar L 1 T *1.1x10% n_ cm” n-in-p FZ
L. Q8 10 ) 7 /&/}_:/_ i‘—’"§ 4-5.1x10" n_cm” n-in-p FZ
— MCzsimilarto FZ 5 G éfx/ I s
. = . N t T "__,.J-—-i_l"_fﬂ— -1.1x10" N, cm: n-in-p MCz|
for piece measured 3 I e Wt
5 I 7/7_{:.5-#-_ iffﬁ*{f - -1_1>(1D: n,, cm'i SRl
— Charge seen after : e -22610" n,,em” nin-p MC3
2.2x10% n_, cm= ‘ '
€q 0 I | L | . L . L .
I 0 200 400 600 800 1000 1200 1400
n-in p Bias Voltage (V)
— FZ and MCz

. p-in-n sensors: FZ-black, MCz-red
similar response

- Charqeléseen aftgr Charge seen with n-strips after 2.5x10% n, cm-2
2.2x10 Neg CNYT (expected maximum dose of innermost devices at SLHC)
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26 MeV Proton Summary

« All n-strip readout
devices give
similar results

— Need low fluence
data to see if Vi
effects significant

e p-in-n shows
Inferior
performance as
expected

25 L] L] L} L] T L] I L] L] LI L] L] L L] L} 'I

A  p-in-n MCz
@ p-in-nFZ

-+ - n-in-n MCz .
—0O—n-in-n FZ 20 kQ cm
--0--n-in-n FZ 5 kQ cm
--& - n-in-p MCz
—Bl—n-in-p FZ 30 kQcm 7
—@— n-in-p FZ 14 k& cm

20

-
(8]

Collected Charge (ke)

(&}

Fluence (10" n_ cm”™)

Appears once trapping dominates, all n-strip readout
choices studied are the same after 26 MeV protons
irradiation as well
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p-in-n FZ lrradiation Summary

p-in-n FZ has
significant
decrease in CCE
>5x10% ny, cm2

ww UMIVYERSITY OF

|
25 |
— 20 |-
< A
x A
5 )
(@)
S
S 15
o --A-- Neutrons (500 V)
8 —B— Neutrons (900 V)
5 - - 24 GeV Protons (500 V)
L 10 | |—95—24 GeV Protons (900 V)
re) —m— Pions (800 V)
Q --&-- Pions (500 V)
—-A—- 26 MeV Protons (500 V)
. —u— 28 MeV Protons (900 V)
|

Fluence (10" n., cm™)
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p-in-n MCz Irradiation Summary

25 { 1 1 1 1 1 1 1 I
20 |- 1 B
More radiation < ;5| i
(@)
hard than 5
i -
-In-n FZ, but © --A-- Neutrons (500 V)
! ©
. . ) 10 | —u— Neutrons (900 V) 7
still fails at 1S - A- 24 GeV Protons (500 V)
<@ —0— 24 GeV Protons (900 V)
>1015 n.. cm? o ~-A-- Pions (500 V)
€g o 5 | - ®m- Pions (900 V) R -
--A-- 26 MeV Protons (500 V) A
—u— 26 MeV Protons (900 V)
0 |
1 10

Fluence (10" n., cm™®)
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n-in-p FZ lrradiation Summary

Results after T T T —
neutron, pion, and 25 - B
proton irradiations S R - Sy R S :
. . L~ ¥
are very similar ~ 20 | , B
*Pions and 24 GeV £ | 1
protons have S 5L N i
significant annealing & ~A-Neutrons (500 V)~ AN
O | —m— Neutrons (900 V) *-..i'—_'_x__-@ )
= --A--Pions (500 V) e
@ 10 | —m—Pions (900 V) NG B
O Sy 26 MeV Protons (500 V)
g - —Hl—26 MeV Protons (200 V) b
)
Charge collected 3 | 4 -24Gev Protons (500 V)

. . ~ —0O— 24 GeV Protons (900 V) -
may be sufficient at | A 24 GeV Protons-Cold (500 V) )
Inner_most Iayer Of —M— 24 GeV Protons-Cold (900 V)

0 1 [ 11 11 | 1 [ [ [ 1 11 | 1 [ [ [ 1 1.1 I [l 1 [
SLHC upgrades 1 10 100

Fluence (10" n, cm’?)
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n-in-p FZ lrradiation Summary (Il)

LURLILLALY | : A ' UL UL | . LU
25 —
After reducing the ~20F -
pion CCE by < | )
. . ()]
estimated annealing 2 15 - \‘\“xﬂg @ i
factor, all sources 5 | g Nower OV s A | _
give consistent CCE 3 --A--Pions (500 V) % A
. L 10 - _m—pions (900 V) .
vs. fluence within 3 | -4-26MeV Protons (500 V) )
sy B —Hl— 26 MeV Protons (900 V)
uncertainties 8 5 L --A-- 24 GeV Protons-Cold (500 V) .
—ml— 24 GeV Protons-Cold (900 V) B
O [ L L_1_1 ll L L L [ L1 1.1 I 1 L 1 L L1 1 II L [ L

1 10 100
Fluence (10" n,, cm’?)
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n-in-p MCz Irradiation Summary

Collected charge
after charged
irradiations are
similar, after
corrected pion
CCE for annealing

Collected Charge (ke)

25 L] I 1 1 1 1 L] 1 LI | l L] L] 1 ] L] ] L] L) I
20 -
15 -
10 -
- A~ Neutrons (500 V) AT k- v
~@— Neutrons (900 V) - S
- A Pions (500 V) FA4
S |- ——Pions (900V) =
—A— 26 MeV Protons (500 V) —
—l— 26 MeV Protons (900 V) 4
D 1 l 1 L L 'l L L L L I L 1 L 'l 1 L L [ I

1 10 100
Fluence (1014 n., cm'g)
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n-in-n FZ Irradiation Summary

--&-- Neutrons (500 V)
—m@— Neutrons (900 V)
- A 24 GeV Protons (500 V)
—o0—24 GeV Protons (900 V) .
--A--26 MeV Protons (500 V)
—m— 26 MeV Protons (900 V)

Results after @ -5
neutron and g °r \
proton 5 i
irradiations 2 1
are again very 2
similar © st
o Lo . .

) 10 100
Fluence (1014 n., cm'z)
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n-in-n MCz Irradiation Summary

25 T T T T T T T T
Study limited by~ »f 1 _
part availability =~ t -

© 15+ % i

There are signs thatit s —i
might be the most % ol X |
radlatl_on hard ma_terlal, 8  Nedtone B0 V)
especially after mixed 8 .| |1 w0y |
irradiations. Much =26 MeV/ Protons (300)
more study is needed.

0 L | L | 1 1 1 1

5 10 15 20
Fluence (1014 N, cm'z)
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Radiation Hardness Measurements

 To complete these irradiation
comparisons, a new round of radiation
hardness measurements need to be made

— Diodes at each site with careful measurement
of environmental conditions

 PT100 in diodes during measurements
— Annealing to a standard time correcting for
annealing that occurred during irradiation
e 80 minutes at 60 C??

ww UMIVERSITY O
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Conclusions

ww UMIVER

Various detector configurations and bulk material types have
been studied after neutron, pion, and proton irradiations

p-in-n FZ/MCz devices are not radiation tolerant enough for the
Inner regions of the SLHC

After neutron, pion, and proton irradiations, n-in-n FZ, n-in-p FZ,
and n-in-p MCz are very similar at high fluences

— There are indications that n-in-n MCz might be better but needs further
study

All n-strip readout devices have sufficient CCE for even the
Inner-most SLHC layers

— Higher bias voltages, better cooling & lower threshold electronics are
needed!!

Studies of annealing properties and mixed irradiations are next.

irs FCG
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Backup Slides
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Wafer Technology Choices

Poly silicon

Single crystal
silicon

. o Silicon melt
Single crystal silicon

 Magnetic Czochralski (MCz)

— More oxygen
 More rad. hard??

 Float Zone (F2) — Less uniformity in resistivity
— Most experience within wafer??
— Relatively low initial Vg — Less expensive??

(20-150V) — Higher initial V., (150-700 V)
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P-strip vs. N-strip Readout

Effect of trapping on the C
Collection Efficiency (Ct

“Standard” p-in-n geometr

(after type inversion)
| L1 L1 L1 L1 L1 L

Un-depleted

T

Type inversion t

 Holes collected

 Deposited charge can
reach electrode

— Charge spread overr . : , .
Je P junction is located near n* implant

strips
— Lower signal

n |ayer Depletetj n

Electric field

Depleted p

Non depleted
bulk

p’ layer

\&

E,

>
Depth

Reality is more complex, but dominant
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p-in-n MCz Irradiation Summary

25 % T
| | 50 L %{H B B
P-in-n MCz is N
significantly better ¢
than p-in-n FZ. o 15T i
>
© i
- y -C
When it can’t be g 1oL | # Neutrons (500 V) ; _
O —B— Neutrons (900 V)
fU”y depleted1 p' "8 - A- 24 GeV Protons (500 V) %3-\ —a
in- ' @ - —0— 24 GeV Protons (900 V) ~ 1
IN-n MChz IS rrllluch 5 T 24.GeY Protons
- 5 | - m- Pions (900 V) N -
wqrset analln --A-- 26 MeV Protons (500 V) A
strip readout I —m— 26 MeV Protons (900 V)
options studied ; | | o ,
1 10

Fluence (1 0" N, cm'z)
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p-in-n FZ lrradiation Summary

| | | | | | | | | | |
A-- Neutrons (500 V)
25 = Neutrons (900 V) -
- A« 24 GeV Protons (500 V)
—0— 24 GeV Protons (900 V)
—m— Pions (800 V)
—~ 20 L ---A--Pjons (500 V) _
o-in-n FZis poor < e
()]
as expected. 5 15l l
Differences fg’
between sources 8 (| —
O
not understood O
A —05
5 i -

1 2 3 4 5 6 7 8 9 10 11 12
Fluence (10" n,, cm?)
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A4

Double Junction

n" layer Depletedn  p’layer

\&

Electric field

Depleted p

Non depleted
bulk

. L . Depth
In reality, after irradiation electric fields

show a double junction structure with a
non-depleted bulk in the middle of the
sensor below the full depletion voltage

See G. Casse, et. al., NIMA 426 (1999) 140-146 and
G. Kramberger, et. al., NIMA 579 (2007) 762-765

for details

| UNIVERSITY

2 F

P-side

N-side

Electric field [V/cm]

T=255K neff=2.5¢12 cm-3

100 200 300
Depth [ym]

ISE-TCAD simulation after 6x1014 p cm

A. Affolder — RD50, 3rd-5th June 2009, Freiburg, Germany



Geometry Choices

o Bias Ring —s—T-in- N-1N-n
p-in-n i i] P
_ Guard Ring W ~50% e Si an_n-in-

— Least expensive

: : . SiO ‘
— Single-sided processing ’ y © - 'el i) n
: : — More udin
— Auvailable from all foundries . I@é‘?ﬂw&(ﬂ]@ 9 )
, _ _ — Limited producing experience
— Most experience in production . 1 VEYp fpudkinstalled, spare system
o All strips at under construction
CMS/ATLAS/ALICE, Tevatron, rMa.vJa&a&tad.latLon_hatd_aMn_ p*

b-factories, ... Al '
‘ (i Bias Ring
* BiBsIRiAy p-iﬁiaﬂRing Guard Rmﬁ-in-p
Guard FMTQJSt'Q,Xp;LSive Guard Ring — |,

~ B SO e LT L L i i

— Limi|ted suppliers p-spray/stop
— Some experience Wlﬂ'h IBrLg
scale production p-bulk
CMS/ATLAS pixels, LHCb VELO

— Mmm x= P

2 F
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Oxygenation RD48

e Oxygenation
shown to reduce
damage due to
protons

— No iImprovement
seen to the
Increase in |[Neff|
with neutron
Irradiations

T
A Carbon-enriched (P503)
- W Standard (P51)
-~ O-diffusion 24 hours (P52)
- > O-diffusion 48 hours (P54)
- O-diffusion 72 hours (P56)

Carbonated

Standard

100

14 -2
(D24 GeV/c proton [10 cm ]

_600
| 500
_400
_300

41200

Viep [V] (300 pm)

Motivates looking at naturally high oxygen
content bulk materials (Cz, MCz, EPI)
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Current SLHC ATLAS Layout

Barrel Pixel Tracker Layers: r=3.7cm, 7.5cm, 16¢cm,

Short Strip (2.4 cm) u-strips (stereo layers): r = 38cm, 49cm, 60cm
Long Strip (9.6 cm) u-strips (stereo layers): r=75cm, 95cm

20cm

H+3+2 (Pi
—Fixed Len Propose
1I e - r%_ .E_.—_. ..I = l - | 2 1. --:4 : |>l'
5| T T — EIEREYR
! | : = =+ =t
IL l 1 1 = l .
BRO AVEN
N a\T] ONAL LADORATORY
(400 collisions per beam crossing)
ww| UMIVERSITY _
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Neutron Irradiations

* p-in-n
— MCz slightly
better than FZ

— Insufficient CCE~ ~ 20} iy 4k t 13 i
for tracking -
>5-10%10% n cm2

* N-iN-N

— MCz much better

than FZ

— Higher dose MCz

data needed ol vy
0 200 400 600 800 1000 1200 1400

o n-in-p Bias Voltage (V)

— FZ/MCz similar
response p-in-n sensors: FZ-black, MCz-red

25 . b |

N
o

O

® 2x10" ncem? p-in-n FZ
o 510" nem? p-in-n FZ
A 1x10" nem? p-in-n FZ
' —o—2x10" nem™ p-in-n MCz
3 ¢ 2 A -4 1x10" nem” p-in-n MCz

-
w
I
L
A
HCH

—_

o
|
>

Collected Charge (ke)
] 2 \

(&)
|
®
]

— Charge seen after
1.5%x101% n cm2
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