

Carrier lifetime variations during irradiation by 3 - 8 MeV protons @ 40-300 K in MCZ Si

E.Gaubas¹, <u>J.Vaitkus¹</u>, A.Uleckas¹, <u>J.Raisanen²</u>

¹⁾Vilnius university, Institute of Materials Science and Applied Research, Vilnius, Lithuania (VU)
²⁾Helsinki University, Accelerator Laboratory group (HUAL)

Outline

- HUAL & VU instrumentation for lifetime measurement during proton irradiation, in-situ positioning and control
- Lifetime-temperature characteristics for initial MCz material and during irradiation with stopped and penetrative protons at different temperatures
- Summary

Motivavtion

It is interesting to understand:

if this linear dependence is a result of irradiation

it is a consequence of irradiation and migration of defects to form other type of defects

The microwave probed photoconductivity (MW-PC) modules for the direct measurements of the carrier decay transients by employing MW absorption are assembled. VUTEG-3HE, master PC-NB, antenna/excitation fiber modules, positioning and visual control modules are installed within irradiation chamber containing a cold finger for cooling of a sample by using closed-cycle He cryostat. Delivering of signals to destination outside running irradiation area are implemented by using LAN.

Assembled instrumentation for τ -exposure-T measurements

3D positioning & inputs

MW needle-

tip antenna

and fiber

probes

Drivers & and remote control instrumentation

Distant transfer lines

Beyond-radiation area & Measurement and operating instrumentation

Sample side for cross-sectional scan

τ -T measurements after irradiations

UNIVERSITY OF HELSINKI

Thermo-couple

τ-exposure at various T characteristics during irradiation with penetrative protons probes are located at half-width of wafer thickness

3

Irradiation of pre-irradiated Si

τ -T results for initial material before irradiation

Two-componential decay in the initial MCZ material wafers, ascribed to carrier recombination (τ_R) and trapping (τ_{ttr}), is observed, and these decay constituents show different temperature characteristics.

For trapping constituent, a few peaks was be observed.

$\tau\text{-}\text{T}$ characteristics in the 8 MeV proton post-irradiated material

Several carrier trapping components appear in τ -T characteristics after irradiation. Si 8MeV protons irradiated at T= 280K

UNIVERSITY OF HELSINKI

$\tau\text{-exposure}$ dependence during implantation of 3 MeV protons

Microwave probe and optical fiber are located at ~ 80 μm distance from the irradiation (beam side) face-surface of wafer

Summary

- The dependence of lifetime on fluence during irradiation by protons shows a dependence of defects generation rate on the temperature and of irradiation, i.e., irradiation itself induces the defect reactions in the sample.
- The pre-irradiation also creates the different conditions for defect reactions.

(The increase of statistics is necessary)

- Two-componential decay in the initial MCZ material wafers, ascribed to carrier recombination (τ_R) and trapping (τ_{ttr}), is observed, and these decay constituents show different temperature characteristics.
- Several carrier trapping components appear in τ -T characteristics after irradiation by penetrative protons.

Thank You for attention!

and

Acknowledgements to Lithuanian Science and Studies Foundation, Ministry of Education and Science and to RD39 common fund for support of this work