Test Beam Measurements with 3D-DDTC Silicon Strip Detectors

<u>Michael Köhler</u>¹, Richard Bates², Gian-Franco Dalla Betta⁵, Maurizio Boscardin³, Simon Eckert¹, Jaakko Härkönen⁴, Sarah Houston², Karl Jakobs¹, Susanne Kühn¹, Panja-Riina Luukka⁴, Teppo Mäenpää⁴, Henri Moilanen⁴, Gregor Pahn¹, Chris Parkes², Ulrich Parzefall¹, Sabina Ronchin³, Andrea Zoboli⁵, Nicola Zorzi³

> ¹University of Freiburg ²University of Glasgow ³FBK-IRST, Trento ⁴University of Helsinki ⁵INFN and University of Trento

Fakultät für Mathematik und Physik . Albert-Ludwigs Universität Freiburg

3D Detectors

- Decoupling of detector thickness and distance for charge collection: columnar electrodes are etched into the sensor and doped
 - Shorter distance between electrodes: lower depletion voltage, lower trapping

 Fabrication of 3D detectors challenging – modified designs under investigation

From 3D-STC to 3D-DDTC

- FBK-IRST (Trento) and CNM (Barcelona): First step was production of 3D-STC (single type column) detectors
 - Columns only from one side and one doping type, not completely penetrating

Problem: low field region between two columns – charge collection not perfect!

- Next step: columns from both sides, but still not fully penetrating
 - **3D-DDTC** (double-sided, double type column)

- Column overlap determines the performance
- Low field regions (as in STC design) expected to be reduced

Test Beam July 2008

- CERN SPS, H2 beamline, 225 GeV/c muons
- In the framework of RD50 and CMS, organised by the University of Helsinki
- Silicon Beam Telescope (SiBT), resolution ≈ 4 µm (or even better)
- Teppo Mäenpää: providing tracking data

FBK sensor

- CNM sensor

- Readout: CMS APV25 chip (analogue)
- Peak mode applied (50 ns shaping time)

Device Under Test

- Two microstrip 3D-DDTC detectors tested in the test beam
 - One sensor produced by CNM (Barcelona)
 - One sensor produced by FBK-IRST (Trento)
 - This talk focuses on the detector provided by FBK-IRST
- Columns on "front" side (p-doped) are joined to strips

					Substrate Type	n-type (FZ)
					Resistivity	> 6 kΩ cm
		• • • •	•••	DC pad	Strip Pitch	100 µm
	• • •			AC nads	Depth of Junction Col (Front Side)	^{umns} 190 μm
junction	• •			(C puus	Depth of Ohmic Columns (Side)	^{(Back} 160 µm
, columns —	•				Strip Length	8.1 mm
(n^+)	• • •				Number of Strips	81
(Y)	• • •				Column Spacing in Strips	100 µm

Substrate Thickness

300 µm

Collected Charge

Landau MPV vs bias voltage

- Maximum charge $\approx 20\pm1$ ke⁻ (3.2\pm0.2 fC)
 - expected for 300 µm silicon: 22000 e (3.5 fC)
- Charge collection time according to simulations ≈ 45 ns (for n-type, depends also on column depth)
 - No significant ballistic deficit (shaping time 50ns)

Charge Collection 2D

- Sensor divided into bins, mean collected charge (not Landau MPV!) superimposed onto a unit cell
 - Growth of the depletion and electric field visible

U=5 V, no clustering

Signal still low, confined to region around readout electrode

Signal uniform, only charge sharing between readout strips

U=40 V, no clustering

U=40 V, 3-strip clusters

Signal uniform (apart from the column positions)

Charge Deposition – Different Regions

ADC spectra in different regions of the sensor (sum of highest and second highest ADC):

distance to center of entire area front columns < 4 μ m Entries 5000 Enune 20E 30E 4000 25 3000 20 15 2000 10 1000 20 4020 60 100 120 140ADC ADC contribution from particles going

distance to center of back columns < 4 μ m

distance to center of front columns: 26 µm - 30 µm

ADC spectrum in columns: two peaks visible

through the columns

- Lower peak believed to come from the particles which deposit charge in the silicon only below the columns
- Higher peak: telescope smearing, inclined tracks

Induced Signal on Adjacent Strips

Signal of particles hiting a readout strip directly or one of its neighbours

- On the boundary between strips: charge is shared
- Induced signal not uniform
 - In some regions: this signal is slightly negative, but less pronounced than in 3D-STC detectors
 - → Qualitative confirmation of laser measurements

2D Efficiency in 3D-STC

- Testbeam from 2007 with 3D-STC detectors (→ diploma thesis Gregor Pahn)
 - 2D efficiency map (40 V bias) with everything superimposed onto one unit cell and then plotted six times next to each other
 - Cut: deposied charge \geq 1 fC
- Expressed low field region in centre between strips visible

2D Efficiency in 3D-DDTC (1)

- 40 V bias: 2D efficiency for SNR \geq 5 (corresponds to \approx 6000 e⁻, 1 fC)
 - Again: everything superimposed onto one unit cell and plotted six times next to each other
 - No clustering applied
- Efficiency (of course) lower in columns, but no expressed low field regions visible
- Overall efficiency: 98 %
 - exceeds 99 % with clustering of neighbouring strips

2D Efficiency in 3D-DDTC (2)

40 V bias: 2D efficiency for SNR ≥10 (corresponds to ≈ 12000 e⁻, 2 fC)

For this high SNR cut: strip structure is clearly visible only when no clustering applied

Overall efficiency: without clustering 92 %, with clustering 97 %

readout strips

1D Efficiency in 3D-DDTC

 1D efficiency for SNR ≥ 5 (corresponds to ≈ 6000 e⁻, 1 fC), 40 V bias, no clustering

Conclusion / Outlook

- All results are preliminary!
- Measured charge close to expected value
- Charge collection uniform
- Measurements with 50 ns shaping time lower signal expected for shorter shaping time (for this special sensor geometry)
 - New batches of DDTC detectors (deeper columns, p-type): Full charge should be collected within 25 ns
- Next Steps: Recalculation of noise and pedestal data (values currently used are an approximation) ...
- Plan: Another test beam in June / July 2009 with 3D detectors and a planar detector (also irradiated)

 \rightarrow Direct comparison of radiation hardness of 3D and planar sensors

Backup Slides

3D-DDTC Detectors

- DDTC: "Double-sided Double Type Columns"
- Columnar electrodes of both doping types are etched into the detector from both wafer sides
- Columns are not etched through the entire detector
 - Charge collection expected to be similar to "full 3D" detectors, but the fabrication process is much simpler

Module

- Readout: APV25, as used in CMS tracker
 - "Peak mode" applied, 50 ns shaping time, analogue readout
 - Trigger accepted during the entire 25 ns clock window (no TDC), but sampling of the signal always at the same time

 \rightarrow Average detected signal expected to be \approx 10% lower

Alignment

- Position of the sensor and rotation w.r.t. the beam is determined by a χ^2 -minimisation of the residuals
- Sensor positioned perpendicularly in the beam
- Final Residuals:

Parallel to strips: RMS=2295 µm

Beam Coverage

- The sensor area was covered by the beam entirely
- Black dots: tracks in region of interest subset of entire beam shape
- Cuts applied to define a "hit":
 - SNR ≥ 10
 - Take only events with one hit passing the cut

Landau Distribution

- ADC distribution with fit of a convoluted Landau and Gaussian
- Cut: SNR ≥ 10

- Conversion from ADC counts into charge using the spectrum of the well known planar telescope sensors
 - 1 ADC count ≈ 590 e⁻ (0.095 fC) still very rough!