The Future of Silicon Solar Cells

Eicke R. Weber

Fraunhofer-Institute for Solar Energy Systems ISE

and

Albert-Ludwigs University Freiburg

RD-50, Freiburg, June 4 2009

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Fraunhofer-Institute for Solar Energy Systems ISE

Areas of business:

- Photovoltaics
- Solar Thermal Technologies
- Renewable Power Generation
- Energy-Efficient Buildings and Technical Building Components
- Applied Optics and Functional Surfaces
- Hydrogen Technology

Largest european solar energy research institute 830 members of staff (incl. students)

10% basic financing
90% contract research
40% industry, 60% public
€ 52.4 M total budget ('08)
> 10% p.a. growth rate

Magnitude of Solar Energy

- Each hour the sun delivers to earth the amount of energy used by humans in a whole year
- Sun radiation onto earth corresponds to 120,000 TW
- Total human energy need in 2020: 20TW!

Source: G.W. Crabtree and N.S. Lewis, Physics Today, March 2007

Exemplary Path, global primary energy consumption

Source: Scientific Council of the German Federal Government on Global Environment Change, 2003, www.wbgu.de

Required Area for PV

Area required to produce 20 TW through PV:

6 sites, 340 x 340 km² each producing 3.3 TW

(using 15% PV cells, 1600hrs/a of sunshine)

PV can easily supply a substantial part of the world energy needs

Solar energy

is the only kind of energy that can solve the earth's energy problems!

Source: 2000-2003 Strategies Unlimited, EPIA "solar generation" 2006, 2010 Rogol, LBBW Report 2007

Global PV-Installations

Source: EPIA, BSW

RD-50, Freiburg, June 4 2009

ISE

Path to Grid Parity in Germany (!)

Development of the global PV-market

RD-50, Freiburg, June 4 2009

Slide courtesy of G. Willeke

Two technologies currently dominate the PV market

Single Crystals:

- highest efficiency
- slow process
- high costs

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Multi crystalline (mc):

- low cost
- fast process
- lower efficiency

Interesting further approaches: ribbon, sheet material, but: savings of scale?

Sketches courtesy of W. Koch

Si Cell technology – State of the Art in Industry

Graphics courtesy of S. Glunz

High-Efficiency Back Contact Solar cells using laser technology

D. M. Huljić et al, in Proc. of the 21st EU PVSEC, (Dresden, 2006).

Thin Monocrystalline Silicon Solar Cells

LFC cell concept yields very high efficiencies for thin cells - 20.2% on 36 μm thin 0.5 Ωcm Fz-Si - 20.4% on 65 μm thin 0.1 Ωcm Fz-Si - 19.5% on 36 μm thin 0.8 Ωcm Cz-Si

+ Light-induced degradation in thin Cz-Si strongly reduced

High-efficiency ISE solar cell structure for mc silicon

Plasma-textured surface: Low reflection and good "light trapping"

Laser-fired contacts (LFC): Low contact resistance and high voltage

Thermal oxide: Surface passivation and high internal reflectivity

> Wafer thickness: 99 µm Efficiency: 20.3% (1 cm²) world record for mc-Si!

Price learn curve of crystalline Si PV-modules

Impact of Ni, Fe, and Cu on lifetime in p-Si

Some PV cell materials were found by NAA analysis to have extraordinary large T-Metals concentrations

Element	ASTROPOWER	BaySix	EFG
Fe	1.50E+16	4.00E+14	6.00E+14
Ni	1.80E+15	less than DL (3e14)	less than DL (1.1e14)
Со	9.70E+13	2.10E+13	1.70E+12
Cu	less than DL (7.8e12)	<2.4e14	<1.3e14
Cr	1.80E+15	1.00E+13	1.70E+12
Hf	less than DL (1.8e12)	7.80E+12	less than DL (6.8e11)
Мо	4.60E+13	1.50E+13	6.40E+12
W	2.00E+13	less than DL (2.2e11)	less than DL (8e10)
Au	4.80E+11	6.50E+10	2.00E+10
As	4.70E+13	3.40E+12	less than DL (9.3e10)
Sb	2.40E+14	1.70E+12	1.20E+11
Ga	2.50E+13	less than DL	9.00E+12

- □ If such a high concentration of metals were all electrically active, the efficiencies of multicrystalline solar cells would be far below 10%!
- As such material can achieve diffusion lengths between 20 and >250 microns, the chemical state and spatial distribution of transition metals determines their electrical activity, rather than the metal concentration!

Applications of synchrotron radiation for studies of metal impurities in silicon

Synchrotron x-ray techniques for the study of metals in mc-Si

μ-XRF (X-ray fluorescence microscopy): <u>Distribution</u>, <u>elemental</u> <u>composition</u>, <u>size</u>, <u>morphology</u> of metal-rich nanoclusters.

μ-<u>XAS</u> (X-ray absorption microspectroscopy): <u>Chemical state</u> of metal-rich nanoclusters.

XBIC mm (X-ray beam induced current): Maps underperforming regions, analogous to LBIC.

SR-XBIC

(Spectrally-resolved XBIC): Quantifies <u>impact of metals</u> on minority carrier diffusion length, analogous to SR-LBIC.

Distribution of metal species depends on metal, process history

T.Buonassisi, A.A. Istratov et al., Prog. Photovolt.: Res. Appl., 2006

Goal of defect engineering of metal impurities

Improvement through change in the state/distribution of metals

T.Buonassisi, A.A.Istratov, M.A.Marcus, B.Lai, Z.Cai, S.M.Heald, E.R.Weber, Nature Materials, 4, 676, (2005)

Our studies showed that properly treated Si even with high metal content can have promising properties ('dirty Si')

mc-Si intentionally contaminated at 1200°C, either quenched in silicone oil, or quenched and then reannealed again at 655°C, or slowly cooled in the furnace.

T.Buonassisi, A.A.Istratov, M.A.Marcus, B.Lai, Z.Cai, S.M.Heald, E.R.Weber, Nature Materials, 4, 676, (2005)

From quartz to coal to metallurgical Silicon (mg-Si)

From mg-Si to ultrapure poly-Si: the Siemens Process

fractional distillation

Alternative Technology for PV: purified ('upgraded') metallurgical Si, umg-Si

Silicon feedstock material

- Semiconductor-grade Si: Siemens process, Si distilled in gas phase;
 B, P: well controlled, metals in ppb and below range
- Solar-grade Si: purified via gas phase, simple crystallization;
 B, P: well controlled, other impurities around & below ppm range
- Upgraded metallurgical Si: Dopants reduced in liquid phase; B,P: reduced just as needed, other impurities in ppm range
- Metallurgical Si: 98% to 99.9% pure, metallic conductivity, impurities in several-ppm and more range

Physicochemically purified feedstock: upgraded mg-Si

RD-50, Freiburg, June 4 2009

Slide courtesy of S. Reber

Upgraded mg-Si: Pro's and Con's

PRO's

- Throughput of purification can be as high as mgfurnace: 10.000 – 15.000 t/a
- Less energy input per kg of purified silicon
- Less (chlorine) chemistry
- Lower investment cost
- Lower cost for purification

CON's

- Achievement of specifications for PV (still) difficult
- Quality control necessary (but difficult)

RD-50, Freiburg, June 4 2009

Slide courtesy of S. Reber

Concepts worked on at ISE: InertCell, EpiCell

InertCell: Wafer solar cell made from (moderately) purified silicon, impurities inactivated EpiCell: Epitaxial silicon thin-film solar cell on (near) metallurgical grade mc-Si wafer substrate

Upgraded metallurgical Si for PV: materials challenges

- Crystallization: Dopant segregation, conduction type reversal
- Wafering: sawing problems due to SiN, SiC inclusions
- Cell processing: has to take into account high metal content, dangers of shunts, lifetime degradation, breakdown voltage reduction

Polysilicon Capacity Trends: How will new entrants fair?

Includes captive and merchant markets; solar and semiconductor applications.

10

Segmentation of the PV Market

- 1 5 %: Organic, Dye, Nanostructure Cells
- 6 11%: Thin film cells (a-Si, microcryst.-Si, CIS, CIGS, CdTe)
- 14 18%: mc-Si, umg-Si, simple c-Si cells
- 20 24%: High efficiency, mainly c-Si cells
- 36 41.1%: High-efficiency III/V tandem cells for concentrators with 25 - 28% module efficiency

New world record (390x), ISE January 2009!

Conclusion: the big picture for photovoltaics

- PV will grow in the coming decades 10 100 times in market volume, from a \$15 B market into a \$100 - 300 B market, replacing fossil fuels, reducing climate gases, and providing unlimited energy.
- Crystalline Silicon will continue to dominate the rapidly growing PV market, thin film modules out of a-Si, CIS, or CdTe today have an interesting market, long-term success depends on efficiency gains and further cost reduction, high efficiency CPV will enter the market soon.
- Organic solar cells, other '3rd generation' concepts will serve interesting market niches, but are not likely to affect the global energy picture.
- One key to decreasing costs for PV is the global production volume; effective support mechanisms such as attractive feed-in rates are still necessary.
- The change from semiconductor-grade (Siemens-process) to solar-grade and then to upgraded metallurgical Si with higher impurity content, employing gettering and defect engineering, opens new ways for volume growth of Si-PV.

