

Analysis of circular polarization of γ **- quanta with energy 10 – 30 MeV using Compton-polarimeter**

A.P. Potylitsyn, I.S. Tropin Tomsk Polytechnic University, Lenin Ave. 30, 634050 Tomsk, Russia

i) Compton scattering of laser photons by ultra relativistic electrons (KEK) Circularly polarized γ - beam

M. Fukuda. PRL, **91**, 164801 (2003)

Differential cross section of the Compton scattering for right-handed polarized laser photons with wavelength of 532 nm backscattered off 1.28 GeV electrons as a function of the y-ray energy. The dashed and dotted curves correspond to the helicities of **+**1 and - 1 for the γ rays, respectively

ii) Undulator radiation (SLAC)

Conceptual layout (not to scale) of the experiment to demonstrate the production of polarized positrons in the SLAC FFTB

The number of photon $N(E_y)$ of undulator radiation as a function of photon energy E_{γ} integrated over angle, for electron energy E_y = 46.6 GeV, undulator period λ_u = 2.54 mm, and undulatorstrength parameter $K = 0.17$. The peak energy E_I of the firstharmonic (dipole) radiation is 7.89 MeV

The longitudinal polarization $P(E_{\gamma})$ of the undulator radiation as a function of photon energy for an undulator with a right-handed helical winding

G. Alexander et al. SLAC-PUB-13605

(2)

(3)

Polarimeter is based on the compton scattering process of circularly polarized photons by longitudinally polarized electrons in a magnetized iron.

The cross-section of this process:

$$
\frac{d\sigma}{d\omega} = \frac{1}{2} \cdot r_0^2 \cdot \frac{\omega^2}{\omega_0^2} \cdot \left\{ \left[\frac{\omega_0}{\omega} + \frac{\omega}{\omega_0} - \sin^2 \theta \right] + P_c \cdot P_e \cdot \left[\left(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0} \right) \cdot \cos \theta \right] \right\} = \frac{d\sigma_0}{d\Omega} \left\{ 1 + P_c \cdot P_e \cdot R \right\} (1)
$$

 $ω₀$ (ω) – energy of initial (scattered) photons, $θ$ – photon scattering angle,

 P_c – degree of photon circular polarization, P_e – degree of longitudinal electron polarization

 $\frac{0}{\omega}$ - v^2 , $\frac{w}{\omega}$, $\frac{w_0}{\omega}$ + $\frac{w}{\omega}$ - \sin^2 0 ω_0 (ω ω_0 $\frac{d\sigma_0}{d\Omega} = r_0^2 \cdot \left(\frac{\omega}{\omega}\right) \cdot \left\{\frac{\omega_0}{\omega} + \frac{\omega}{\omega} - \sin \omega\right\}$ *d* σ_0 (σ) σ_0 (ω θ $\omega_{\scriptscriptstyle 0}$) \mid ω \mid $\omega_{\scriptscriptstyle 0}$ $\left(\begin{array}{c} \omega \end{array}\right)$ $\left[\begin{array}{ccc} \omega_0 & \omega & \ldots & \omega_n \end{array}\right]$ $\frac{\partial v_0}{\partial x} = r_0^2 \cdot \left(\frac{\omega}{\omega_0} \right) \cdot \left\{ \frac{\omega_0}{\omega} + \frac{\omega}{\omega_0} - \sin^2 \theta \right\}$

Cross-section for unpolarized particles

The asymmetry ratio R in (1) is expressed as

$$
R = \frac{\left(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}\right) \cdot \cos \theta}{\frac{\omega_0}{\omega} + \frac{\omega}{\omega_0} - \sin^2 \theta}
$$

There were used transmission polarimeters in KEK and SLAC

 P_e =0.07, n = 2.18 · 10²⁴ cm⁻³, L = 15 cm

Transmission polarimetry:

- possible contribution from shower photons
- low rate due to large length of iron (photon attenuation length for $E_{\gamma} \approx 60$ MeV, $\lambda = 30$ g/cm² = 4 cm)
- low asymmetry ratio
- The possible scheme for compton polarimeter without above mentioned disadvantages [A.S. Aryshev, A.P. Potylitsyn, M.N. Strihanov. IX Workshop on High Energy Spin Physics, 120 SPIN01, Dubna, 373 (2001)] 100 $E_v = 60$ Mev

10 θ_e , grad

 $\overline{10}$ θ_e , grad

8

8

 $E_v = 30$ Mev

 $E_v = 60$ Mev

6

6

 $\overline{20}$

 E_e , MeV

 25

$$
\left(\begin{aligned}\nT &= \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = \frac{P_e P}{1 + \frac{N_p}{N_c}} \\
N_p &= \int_{\Delta E} N_{pair} dE_e; \quad N_c = \int_{\Delta E} N_{\text{component}} dE_e\n\end{aligned}\right)
$$

15

10

5

 0_0

 $\Delta E \rightarrow E_{\text{emin}} = 27.5 \text{ MeV}, E_{\text{enax}} = 31 \text{ MeV}$ Yield $\sim 3 \cdot 10^2 e^-$ / bunch $= 0.146;$ T = 0.055 \overline{N}_p *c N*

A spectral – angular selection of scattered electrons may provide significant increasing of an analyzer power

> The Magnet Spectrometer was used in [T. Suwada et al. PRE, **67**, 016502 (2003)] to measure positron spectra at $\theta = 0^{\circ}$

POSIPOL

The ILC scheme proposed [S.Araki et al. Snowmass (2005)]

 $n_{ph}(23.2 \text{ MeV} \leq E_{\gamma} \leq 29 \text{ MeV}) \sim 0.22 \text{ per e}^{-1}$ $\overline{n} = n_{ph}(0 \leq E\gamma \leq 29 \text{ MeV}) \sim 0.9 \text{ per e}^{-1}$

 $5 \mathrm{km}$

There may be a needful for precise measurement of Pc. The Poisson distribution for mean \overline{n} :

$$
P_{\overline{n}}(n) = exp(-\overline{n})\frac{(\overline{n})^n}{n!}
$$

 $(n = 0,1,2,... -$ number of emitted photons by electron)

 $U_m(\gamma_0, \gamma)$ – normalized electron energy distribution after emission of m photons $(mc^2 = 1)$ [A. Kolchuzhkin,A. Potylitsyn et al. NIMB, **201**, 207 (2003)]

Alexander Potylitsyn, Tomsk, Russia

Photon spectra from electrons with U_0 , U_1

CONCLUSION

- The polarimeter proposed may provide the increasing of analyzing power at list 4 times in comparison with a transmission polarimeter
- In order to decrease a systematic error the scheme proposed allows to change magnetization field H after passing of a few $(< 10$) bunches
- The intensity of detected electrons allows to achieve a statistical error \sim 10 % during a few seconds

Thank you for your attention!