
Advanced Course on Grid Technologies, UoA, 2009/02/23

The Message Passing Interface (MPI)The Message Passing Interface (MPI)

and its integration with the EGEE Gridand its integration with the EGEE Grid

Vangelis KoukisVangelis Koukis
HGHG--0101--GRNET and HGGRNET and HG--0606--EKT admin teamEKT admin team

vkoukis@cslab.ece.ntua.grvkoukis@cslab.ece.ntua.gr

Presentation OutlinePresentation Outline

� Parallel Programming

�Parallel architectures

�Parallel programming models and MPI

� Introduction to basic MPI services

� MPI demonstration on a dedicated cluster

� Integration of MPI jobs on the EGEE Grid

� MPI job submission to HG-01-GRNET

� Discussion / Q&A Session

The lifetime of a serial job on the GridThe lifetime of a serial job on the Grid

RB/WMS CEUI

LRMS
(Torque / PBS)

allocation of a
single processor

Worker Node

The need for MPI apps on the GridThe need for MPI apps on the Grid

� The Grid offers very large processing capacity:

How can we best exploit it?

�Thousands of processing elements / cores

� The easy way: The EP way

� Submit a large number of independent (serial) jobs,
to process distinct parts of the input workload
concurrently

� What about dependencies?

�What if the problem to be solved is not
“Embarassingly Parallel”?

Presentation OutlinePresentation Outline

� Parallel Programming

�Parallel architectures

�Parallel programming models and MPI

� Introduction to basic MPI services

� MPI demonstration on a dedicated cluster

� Integration of MPI jobs on the EGEE Grid

� MPI job submission to HG-01-GRNET

� Discussion / Q&A Session

Parallel Architectures (1)Parallel Architectures (1)

� Distributed Memory Systems

(e.g., Clusters of Uniprocessor Systems)

Parallel Architectures Parallel Architectures (2)(2)

� Shared Memory Architectures

(e.g., Symmetric Multiprocessors)

Parallel Architectures Parallel Architectures (3)(3)

� Hybrid – Multilevel Hierarchies

(e.g., Clusters of SMPs, Multicore/SMT Systems)

One model: The MessageOne model: The Message--Passing ParadigmPassing Paradigm

MPI_Recv MPI_Send

Presentation OutlinePresentation Outline

� Parallel Programming

�Parallel architectures

�Parallel programming models and MPI

� Introduction to basic MPI services

� MPI demonstration on a dedicated cluster

� Integration of MPI jobs on the EGEE Grid

� MPI job submission to HG-01-GRNET

� Discussion / Q&A Session

What Is MPI?What Is MPI?

� A standard, not an implementation

� An app library for message-passing

� Following a layered approach

� Offering standard language bindings at

the highest level

� Managing the interconnect at the

lowest level

� Offers C, C++, Fortran 77 and F90 bindings

Lots of MPI implementationsLots of MPI implementations

� MPICH
http://www-unix.mcs.anl.gov/mpi/mpich

� MPICH2
http://www-unix.mcs.anl.gov/mpi/mpich2

� MPICH-GM
http://www.myri.com/scs

� LAM/MPI
http://www.lam-mpi.org

� LA-MPI
http://public.lanl.gov/lampi

� Open MPI
http://www.open-mpi.org

� SCI-MPICH
http://www.lfbs.rwth-aachen.de/users/joachim/SCI-MPICH

� MPI/Pro
http://www.mpi-softtech.com

� MPICH-G2
http://www3.niu.edu/mpi

� Multiple peer processes executing the same
program image

� A number, called rank is used to tell each of
the processes apart
�Each process undertakes a specific subset of the

input workload for processing
�Execution flow changes based on the value of rank

� The basic rules of parallel programming
�Effort to maximize parallelism
�Efficient resource management (e.g., memory)
�Minimization of communication volume
�Minimization of communication frequency
�Minimization of synchronization

SingleSingle ProgramProgram,, MultipleMultiple DataData (SPMD)(SPMD)

Processes and CommunicatorsProcesses and Communicators

� Peer processes are organized in groups,

called communicators. At program start,

there is MPI_COMM_WORLD

� Each process is assigned a single rank in

the range of 0...P-1, where P is the

number of processes in a communicator

� We’re referring to processes, not

processors (what about time-sharing?)

Typical MPI code structureTypical MPI code structure

#include <mpi.h>

int main(int argc, char *argv[])

{

...

/* Initialization of MPI support */

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

...

/* MPI Finalization, cleanup */

MPI_Finalize();

}

Basic MPI services (1)Basic MPI services (1)

•� MPI_Init(argc,argv)
�Library Initialization

� MPI_Comm_rank(comm,rank)
�Returns the rank of a process in communication comm

� MPI_Comm_size(comm,size)
�Returns the size (the number of processes) in comm

� MPI_Send(sndbuf,count,datatype,dest,tag,comm)
� Sends a message to process with rank dest

� MPI_Recv(rcvbuf,count,datatype,source,tag,
comm,status)
�Receives a message from process with rank source

� MPI_Finalize()
�Library Finalization

Basic MPI Services (2)Basic MPI Services (2)

int MPI_Init(int* argc, char*** argv)

� Initializes the MPI environment

� Usage example:

int main(int argc,char *argv[])
{

…
MPI_Init(&argc,&argv);
…

}

Basic MPI Services (3)Basic MPI Services (3)

int MPI_Comm_rank (MPI_Comm comm, int* rank)

� Returns the rank of the calling process in

communicator comm

� Usage example:

int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

Basic MPI Services (4)Basic MPI Services (4)

int MPI_Comm_size (MPI_Comm comm, int* size)

� Returns the size (number of processes) in

communicator comm

� Usage example:

int size;

MPI_Comm_size(MPI_COMM_WORLD,&size);

Basic MPI Services (5)Basic MPI Services (5)

int MPI_Send(void *buf, int count, int dest,
int tag, MPI_Datatype datatype, MPI_Comm
comm)

� The calling process sends a message from buf to

the process with rank dest

� Array buf should contain count elements of

type datatype

� Usage example:

int message[20],dest=1,tag=55;

MPI_Send(message, 20, dest, tag, MPI_INT,
MPI_COMM_WORLD);

Basic MPI Services (6)Basic MPI Services (6)

int MPI_Recv(void *buf, int count, int
source, int tag, MPI_Datatype datatype,
MPI_Comm comm, MPI_Status *status)

� Receives a message from process with rank source and
saves it in buf

� At most count elements of type datatype are to be
received (MPI_Get_count used to get the precise count)

� Wildcards
� MPI_ANY_SOURCE, MPI_ANY_TAG

� Usage example:

int message[50],source=0,tag=55;
MPI_Status status;
MPI_Recv(message, 50, source, tag,

MPI_INT, MPI_COMM_WORLD, &status);

Basic MPI Services (7)Basic MPI Services (7)

BasicBasic MPI Services (8)MPI Services (8)

int MPI_Finalize()

� Finalizes MPI support

� Should be the final MPI call made by

the program

/* Computes f(0)+f(1) in parallel */

#include <mpi.h>

int main(int argc,char** argv){

int v0,v1,sum,rank;

MPI_Status stat;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

if(rank==1) {

v1=f(1);

MPI_Send(&v1,1,0,50,MPI_INT,MPI_COMM_WORLD);

else if(rank==0){

v0=f(0);

MPI_Recv(&v1,1,1,50,MPI_INT,MPI_COMM_WORLD,&stat);

sum=v0+v1;

}

MPI_Finalize();

}

Process 1

Process 0

A simple exampleA simple example

Different Communication SemanticsDifferent Communication Semantics

� Point-to-point / Collective Communication

� Synchronous, buffered or ready

�With different buffering and synchronization
semantics

� Blocking or non-blocking calls

�Depending on when MPI returns control
to the calling process

if (rank == 0)

for (dest = 1; dest < size; dest++)

MPI_Send(msg,count,dest,tag,MPI_FLOAT,MPI_COMM_WORLD);

Example: Process 0 needs to send msg to processes 1-7

In general: p – 1 communication steps needed for p processes

Collective Communication (1)Collective Communication (1)

In general: communication steps needed for p processes

MPI_Bcast(msg,count,MPI_FLOAT,0,MPI_COMM_WORLD);

Example: Process 0 needs to send msg to processes 1-7

⎡ ⎤plog
2

Collective Communication(2)Collective Communication(2)

int MPI_Bcast(void* message, int count,
MPI_Datatype datatype, int root, MPI_Comm
comm)

Collective Communication Collective Communication (3)(3)

� Message in message is broadcast from

process root to all processes in

communicator comm

� Memory at message should contain count

elements of type datatype

� Called by all processes in comm

int MPI_Reduce(void* operand, void*
result, int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

Collective Communication Collective Communication (4)(4)

� All data in operand pointers contributed
to reduction operation op, and the result
is retrieved by root in result

� Needs to be called by all processes in
comm

� MPI_Op: MPI_MAX, MPI_MIN, MPI_SUM,
MPI_PROD, etc.

� An MPI_Allreduce variant is also available

Collective Communication Collective Communication (5)(5)

/* Compute f(0)+f(1) + … + f(n) in parallel */

#include <mpi.h>

int main(int argc,char *argv[]){

int sum,rank;

MPI_Status stat;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

/* Assumes values have been computed in f[] */

MPI_Reduce(&f[rank],&sum,1,MPI_INT,MPI_SUM,0,

MPI_COMM_WORLD);

MPI_Finalize();

}

Collective Communication Collective Communication (6)(6)

int MPI_Barrier(MPI_Comm comm)

� Synchronizes execution of processes in

communicator comm

� Each process blocks until all participating

processes reach the barrier

� Reduces the degree of attainable parallelism

Collective Communication Collective Communication (7)(7)

int MPI_Gather(void* sendbuf, int sendcnt,
MPI_Datatype sendtype, void* recvbuf, int
recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

� Data in sendbuf are gathered in memory

belonging to process with rank root (in

increasing rank)

� Results stored in recvbuf, which contains

meaningful data only for root

� Also available as an MPI_Allgather variant

� The reverse project: MPI_Scatter

Synchronous Synchronous –– Buffered Buffered -- ReadyReady

� Different completion semantics for send

and receive operations

� Available in blocking as well as

non-blocking variants

� A simple MPI_Send can be synchronous or

buffered, depending on implementation

Synchronous Synchronous –– Buffered Buffered –– Ready (2)Ready (2)

� int MPI_Ssend(void *buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)
� Returns successfully only when operation has completed on the

receiver side - safe

� int MPI_Bsend(void *buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)
� Returns as soon as possible, performs intermediate buffering and

schedules sending over the network – may fail later on

� int MPI_Rsend(void *buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)
� Returns as soon as possible, but requires guarantee that a receive

operation has already been posted on the remote side - uncertain

Synchronous Synchronous –– Buffered Buffered –– Ready (3)Ready (3)

Returns only if send

successful

Returns only if send

successful

May fail later due to

resource constraints

Will fail if no receive

is outstanding on

the remote

No need for

outstanding receive

No need for

outstanding receive

1 memory copy1 memory copy2 memory copies

Completes locallySyncs with remoteCompletes locally

MPI_RsendMPI_SsendMPI_Bsend

Non Non –– Blocking CommunicationBlocking Communication

� MPI returns control immediately to the calling

process, but

� It is not safe to reuse provided buffers before

the posted operations have completed

� Two ways to check for operation completion:

�int MPI_Test (MPI_Request* request,int*
flag, MPI_Status* status)

�int MPI_Wait (MPI_Request*
request,MPI_Status* status)

� Each blocking function has a non-blocking

counterpart:

�MPI_Isend (corresponds to MPI_Send)

�MPI_Issend (corresponds to MPI_Ssend)

�MPI_Ibsend (corresponds MPI_Bsend)

�MPI_Irsend (corresponds MPI_Rsend)

�MPI_Irecv (corresponds MPI_Recv)

Non Non –– Blocking Communication (2)Blocking Communication (2)

� Why use non-blocking operations?

�Enables overlapping computation with

communication for efficiency:

Non Non –– Blocking Communication (3)Blocking Communication (3)

Non-blockingBlocking

MPI_Irecv();

MPI_Isend();

Compute();

Waitall();

MPI_Recv();

MPI_Send();

Compute();

MPI MPI DatatypesDatatypes

MPI_CHAR: 8-bit character

MPI_DOUBLE: 64-bit floating point value

MPI_FLOAT: 32-bit floating point value

MPI_INT: 32-bit integer

MPI_LONG: 32-bit integer

MPI_LONG_DOUBLE: 64-bit floating point value

MPI_LONG_LONG: 64-bit integer

MPI_LONG_LONG_INT: 64-bit integer

MPI_SHORT: 16-bit integer

MPI_SIGNED_CHAR: 8-bit signed character

MPI_UNSIGNED: 32-bit unsigned character

MPI_UNSIGNED_CHAR: 8-bit unsigned character

MPI_UNSIGNED_LONG: 32-bit unsigned integer

MPI_UNSIGNED_LONG_LONG: 64-bit unsigned integer

MPI_UNSIGNED_SHORT: 16-bit unsigned integer

MPI_WCHAR: 16-bit unsigned integer

MPI MPI DatatypesDatatypes (2)(2)

� MPI data packing for communication

needed for complex datatypes

� count parameter (for homogeneous data

in consecutive memory locations)

� MPI_Type_struct (derived datatype)

� MPI_Pack(), MPI_Unpack() (for

heterogeneous data)

� Support for Parallel I/O

� Dynamic process management, runtime

process spawning and destruction

� Support for remote memory access

operations

�One-sided RDMA operations

The MPIThe MPI--2 Standard2 Standard

The MPICH implementationThe MPICH implementation

MPID

συσκευή ADI-2

MPI API

Interaction with OS

(system libraries,
inteconnection network,
memory management)

MPIR

run-time library

MPIP

profiling interface

Library interface

Interconnect

MPI API

MPID

ADI-2 device

The MPICH Implementation (2)The MPICH Implementation (2)

� 1 send message queue, 2 receive queues per
process
�posted + unexpected

� Underlying device selection based on the
destination rank
�p4, shmem

� Protocol selection based on message size
� Short < 1024 bytes, rendezvous > 128000 bytes,

eager protocol for sizes in-between

� Flow control
�1MB buffer space for the eager protocol per

pair of processes

Presentation OutlinePresentation Outline

� Parallel Programming

�Parallel architectures

�Parallel programming models and MPI

� Introduction to basic MPI services

� MPI demonstration on a dedicated cluster

� Integration of MPI jobs on the EGEE Grid

� MPI job submission to HG-01-GRNET

� Discussion / Q&A Session

MPI program execution (1)MPI program execution (1)

� The traditional, HPC way: running directly

on a dedicated PC Cluster

� Linux cluster of 16 multicore nodes

(clone1…clone16)

� Program compilation and execution

�Appropriate PATH for a specific MPI implementation
• export PATH=/usr/local/bin/mpich-intel:…:$PATH

�Compile and link with the relevant MPI-specific libraries
• mpicc test.c –o test –O3

�Program execution
• mpirun –np 16 test

Demo timeDemo time!!

� Run a simple “Hello World” 16-process

MPICH job on dedicated cluster (clones)

MPI program execution (2)MPI program execution (2)

� Which machines do the peer processes run on?
�Machine file

$ cat <<EOF >machines
clone4
clone7
clone8
clone10
EOF

$ mpiCC test.cc –o test –O3 –static –Wall
$ mpirun –np 4 –machinefile machines test

MPI program execution (3)MPI program execution (3)

� Implementation details

�How are the needed processes created? An
implementation- and OS-specific issue
• passwordless rsh / ssh, cluster nodes trust one

another and share a common userbase

• Using daemons, (“lamboot” for LAM/MPI)

� What about file I/O;

�Shared storage among all cluster nodes
• NFS in the most common [and slowest] case

• Deployment of a parallel fs, e.g., PVFS, GFS, GPFS

Presentation OutlinePresentation Outline

� Parallel Programming

�Parallel architectures

�Parallel programming models and MPI

� Introduction to basic MPI services

� MPI demonstration on a dedicated cluster

� Integration of MPI jobs on the EGEE Grid

� MPI job submission to HG-01-GRNET

� Discussion / Q&A Session

MPI jobs in the Grid environmentMPI jobs in the Grid environment

� Submission of MPICH-type parallel jobs
Type = "job";

JobType = "MPICH";

NodeNumber = 64;

Executable = “mpihello";

StdOutput = "hello.out";

StdError = "hello.err";

InputSandbox = {“mpihello"};

OutputSandbox = {"hello.out","hello.err"};

#RetryCount = 7;

#Requirements = other.GlueCEUniqueID ==
"ce01.isabella.grnet.gr:2119/jobmanager-pbs-short"

The lifetime of an MPI job on the GridThe lifetime of an MPI job on the Grid

RB/WMS CEUI

LRMS
(Torque / PBS)

Node selection
($PBS_NODEFILE)

and mpirun

Worker Nodes

Presentation OutlinePresentation Outline

� Parallel Programming

�Parallel architectures

�Parallel programming models and MPI

� Introduction to basic MPI services

� MPI demonstration on a dedicated cluster

� Integration of MPI jobs on the EGEE Grid

� MPI job submission to HG-01-GRNET

� Discussion / Q&A Session

Demo timeDemo time!!

� Submission of a “Hello World” 4-process

MPICH job to HG-01-GRNET

Questions Questions –– Issues Issues -- DetailsDetails

� Who is responsible for calling mpirun;

�On which nodes? How are they selected?

� Shared homes / common storage?

� Process spawing and destruction? Accounting?

�MPICH-specific solutions, based on rsh / ssh

�mpiexec to integrate process creation with Torque

�CPU Accounting for multiple processes per job

� Support for different Interconnects and/or MPI

implementations?

�Where does compilation of the executable take place?

Now and in the futureNow and in the future......

� Grid support for MPI jobs is a

Work In Progress

�Support for MPICH over TCP/IP (P4 device)

�Possible problems with other devices, since

P4-specific hacks are used

� Need for pre/post-processing scripts

�Compilation of the executable on the remote

Worker Nodes?

EGEE MPI Working GroupEGEE MPI Working Group

� Aims to provide standardized, generic
support for different MPI
implementations

�http://egee-docs.web.cern.ch/egee-
docs/uig/development/uc-mpi-jobs_2.html

� Proposes implementation guidelines for
the compilation and execution of parallel
jobs

Other IssuesOther Issues

� Processor selection and allocation to

processes, packing of processes to nodes

�What about message latency?

�Per-node memory bandwidth

�Available memory per node

� Support for hybrid architectures

�Combine MPI with pthreads / OpenMP to

better adapt to the underlying architecture

Bibliography Bibliography –– Online sourcesOnline sources

� Writing Message-Passing Parallel Programs with
MPI (Course Notes – Edinburgh Parallel
Computing Center)

� Using MPI-2: Advanced Features of the Message-
Passing Interface (Gropp, Lusk, Thakur)

� http://www.mpi-forum.org (Definition of the
MPI 1.1 and 2.0 standards)

� http://www.mcs.anl.gov/mpi (home of the
MPICH implementation)

� comp.parallel.mpi (newsgroup)

Presentation OutlinePresentation Outline

� Parallel Programming

�Parallel architectures

�Parallel programming models and MPI

� Introduction to basic MPI services

� MPI demonstration on a dedicated cluster

� Integration of MPI jobs on the EGEE Grid

� MPI job submission to HG-01-GRNET

� Discussion / Q&A Session

