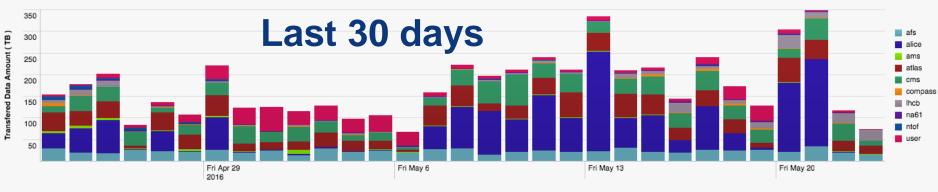
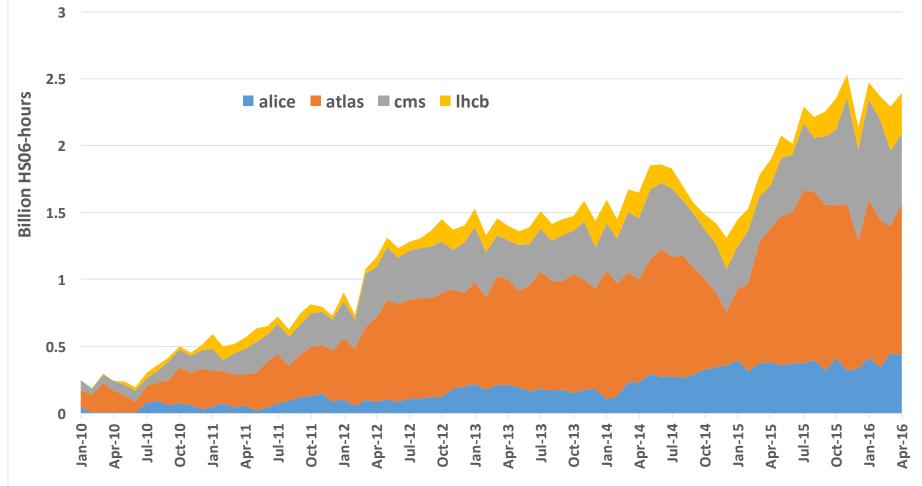

Ian Bird, CERN WLCG LHCC Referee Meeting 25th May 2016


WLCG Topics

LHCC; 25 May 2016

2016 data in Tier 0



Time

Ramp-up of WLCG CPU

Tier 0

MEYRIN DATA CENTRE

	last_value
Number of Cores in Meyrin	151,107
Number of Drives in Meyrin	83,702
Number of 10G NIC in Meyrin	9,305
Number of 1G NIC in Meyrin	23,641
Number of Processors in Meyrin	25,207
Number of Servers in Meyrin	13,373
 Total Disk Space in Meyrin (TB) 	175,893
Total Memory Capacity in Meyrin (TB)	613

WIGNER DATA CENTRE

	last_value
 Number of Cores in Wigner 	43,328
 Number of Drives in Wigner 	23,180
 Number of 10G NIC in Wigner 	1,399
 Numer of 1G NIC in Wigner 	5,067
 Number of Processors in Wigner 	5,418
 Number of Servers in Wigner 	2,712
 Total Disk Space in Wigner (TB) 	71,738
 Total Memory Capacity in Wigner (TB) 	172

FILE TRANSFER THROUGHPUT (GB/S)

NETWORK AND STORAGE

WIGNER NETWORK LINKS (GBIT/S)

00:00

05-18

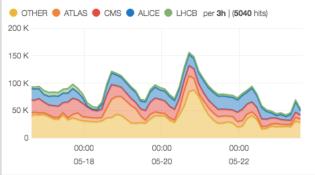
(**2684** hits) 96 GB

64 GB

32 GB

0 B

	last_value
 Tape Drives 	104
 Tape Cartridges 	20,517
 Data Volume on Tape (TB) 	140,606
 Free Space on Tape (TB) 	44,024
 Routers (GPN) 	140
 Routers (TN) 	30
 Routers (Others) 	107
Switches	3,708

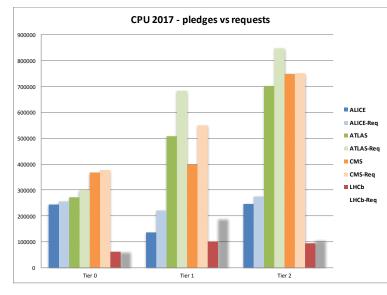

🜒 OUT (GEANT) 🌑 OUT (T-Systems) 😑 IN (GEANT) 😑 IN (T-Systems) per 3h |

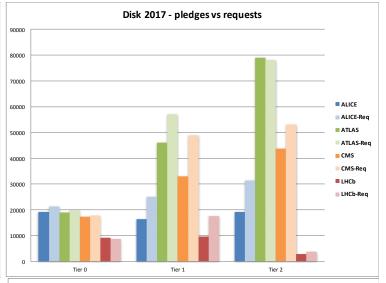
00:00

05-20

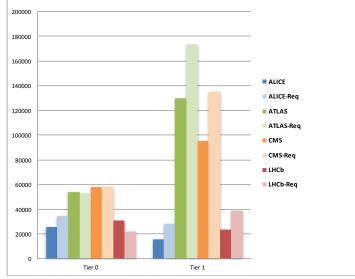
BATCH JOBS (#)

CERN

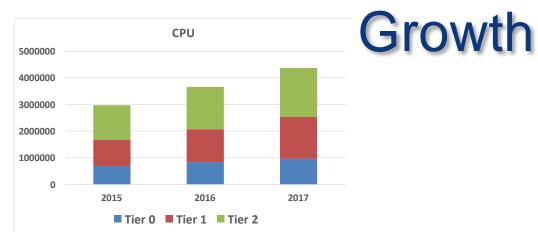

_CG

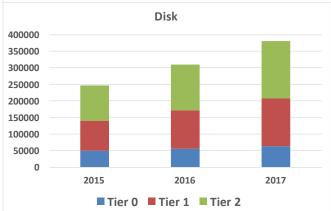

LHCC; 25 May 2016

00:00


05-22

Resources - 2017





Tape 2017 - pledges vs requests

Planning - progress

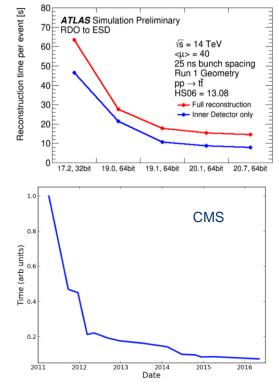
- Planning assumptions
 - Work has started to document baseline assumptions for Run 4 - ongoing
 - Following format of resource outlook from Run 2 document
- Software topics
 - See Benedikt's talk today, following HSF workshop; including first performance workshop

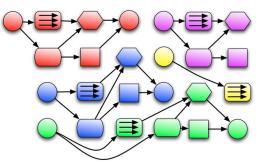
Planning: Demonstrators

- □ Work has started on prototypes for:
 - Storage federations:
 - Reliable storage at large sites (clustering of storage between sites) – single view for experiments;
 - concrete proposal for this based on EOS, to be prototyped in Russia initially
 - Opportunistic (caches) at small sites essentially to support active work, but not long term
 - No concrete work yet, but could be based on DPM
 - Machine Learning:
 - Interest from all experiments; investigate anomaly detection in production workflows, and in data management systems; in particular combining information from >1 experiment
 - Some funding in Russia, efforts in ATLAS and LHCb, CMS also interested
- Under discussion:
 - How to instantiate a "Tier 2 in a box" → simplified deployment of a site with minimal effort needed
 - Several ideas being investigated to be followed up

Performance session at HSF

□ https://indico.cern.ch/event/496146/timetable/


- Alice
- ATLAS
- CMS
- Astro Physics
- Root
- Geant(V)
- Art/LArSoft
- Followed by a panel discussion: (summary) https://indico.cern.ch/event/496146/contributions/21474 20/attachments/1265860/1895094/SummaryPanel.pdf


Observations:

- Massive work has been invested in improving the code used in Run1
 - Selection of efficient libs (CLHEP \rightarrow Eigen)
 - Tracking in magnetic fields
 - Static code analysis
 - Performance monitoring
 - Many different tools
 - Reorganisation of data structures
 - Experiments know where the time is spent
 - Which doesn't mean that it is clear how to speed it up...
 - Huge improvements, but:
 - gains are getting smaller \rightarrow region of diminishing return?
- □ ALICE invested heavily in understanding the use of GPUs
 - New tracking code developed with GPUs and parallelism in mind
 - Improved performance also in CPUs
 - Many systematic studies (see slides)
- Cooperation between experiments exists, especially in tracking
- Everyone states that what matters is throughput, but most work is focussed on acceleration of code
 - Event/sec is used as unit, not event/sec per unit of hardware investment
- Experience from other communities: Astro
 - Classical HPC applications, "standard" codes, limited number of algorithms
 - HEP use cases much more divers, many algorithms in the same job, data intensive

Future directions

- Exploiting parallelism wherever possible
 - Starting from the frameworks (Gaudi, AthenaMT, ROOT,...)
 - GPUs, accelerators, multi core
- Part of the community is convinced that HEP computing will depend in the future on efficient usage of HPC machines
 - Part of the community disagrees strongly
- Evolution not revolution
 - Effort levels exclude a revolution
 - Not clear how much can be gained from evolution
- □ Agreement that common approach is needed for HL-LHC
 - Community Whitepaper
 - Working groups

