

WLCG Status Report

CERN-RRB-2009-040

Agenda

- WLCG service status
- Roadmap STEP'09
- Planning for 2010 (EGI etc)
- Re-assessment of experiment requirements

WLCG Service

	Reli-	Avail-		Reli-	Avail-		
Federation	ability	ability	Federation	ability	ability		
T2_US_Caltech	100 %	100 %	UK-SouthGrid	95 %	94 %		
T2_US_UCSD	100 %	100 %	T2_US_Nebraska	95 %	95 %		Tier 2 reliabilities
US-NET2	99 %	99 %	FR-GRIF	95 %	92 %	_	Tier 2 reliabilities
T2_US_Wisconsin	99 %	95 %	ES-CMS-T2	94 %	89 %		
JP-Tokyo-ATLAS-T2	99 %	99 %	FR-IN2P3-IPHC	93 %	92 %		
FR-IN2P3-SUBATECH	99 %	99 %	DE-DESY-RWTH-CMS-T2	93 %	91 %	•	Goal to have all
ES-ATLAS-T2	99 %	95 %	US-AGLT2	93 %	93 %		>95%
FR-IN2P3-LAPP	99 %	98 %	IN-DAE-KOLKATA-TIER2	93 %	84 %		>93 /0
FR-IN2P3-LPC	99 %	99 %	RU-RDIG	93 %	92 %		
T2_US_MIT	98 %	98 %	IT-ALICE-federation	92 %	81 %		
T2_US_Purdue	98 %	93 %	IT-ATLAS-federation	92 %	81 %		Significant
CH-CHIPP-CSCS	98 %	97 %	IT-CMS-federation	92 %	81 %		improvements
US-SWT2	98 %	98 %	IT-LHCb-federation	92 %	81 %		improvements
HU-HGCC-T2	98 %	98 %	DE-MCAT	90 %	84 %		
AT-HEPHY-VIENNA-UIBK	97 %	87 %	FI-HIP-T2	87 %	80 %		
BE-TIER2	97 %	91 %	AU-ATLAS	87 %	50 %		Only 1 non-reporting
US-MWT2	97 %	97 %	DE-FREIBURGWUPPERTAL	86 %	78 %		federation
UK-NorthGrid	97 %	97 %	SE-SNIC-T2	86 %	85 %		roderation
DE-DESY-ATLAS-T2	97 %	97 %	NO-NORDGRID-T2	85 %	84 %		
US-WT2	97 %	97 %	IN-INDIACMS-TIFR	85 %	83 %		
CN-IHEP	97 %	96 %	CA-WEST-T2	84 %	83 %		
T2_US_Florida	97 %	97 %	EE-NICPB	84 %	81 %		
CZ-Prague-T2	97 %	97 %	TR-Tier2-federation	83 %	83 %		
PT-LIP-LCG-Tier2	97 %	93 %	DE-GSI	79 %	28 %		
FR-IN2P3-CC-T2	97 %	89 %	KR-KNU-T2	76 %	73 %		
UK-ScotGrid	96 %	96 %	IL-HEPTier-2	75 %	75 %		
ES-LHCb-T2	96 %	96 %	CA-EAST-T2	34 %	15 %		
UK-London-Tier2	96 %	93 %	PK-CMS-T2	0 %	0 %		
KR-KISTI-T2	95 %	95 %	SI-SiGNET	0 %	0 %		
RO-LCG	95 %	95 %	TW-FTT-T2	0 %	0 %		
PL-TIER2-WLCG	95 %	95 %	UA-Tier2-Federation	N/A	N/A		

VO-specific tests

July 2008 - December 2008 Reliability of WLCG Tier-1 Sites + CERN for ATLAS

Data from SAM Monitoring. Plots show Reliability for last 6 Months

CA-TRIUMF

FR-CCIN2P3

NL-T1

■NA □M ■!R ■R

Reliability is calculated as time_site_is_available / (total_time - time_site_is_scheduled_down)

Target reliability for each site is 95 % and Target for 8 best sites is 97 % from June, 2008

Reliability of WLCG Tier-1 Sites + CERN for CMS

July 2008 - December 2008

December 2008

■NA □M ■!R ■R

Data from SAM Monitoring. Plots show Reliability for last 6 Months

Reliability is calculated as time site is available / (total time - time site is scheduled down)

In the process of being validated

Reliability of WLCG Tier-1 Sites + CERN for ALICE

July 2008 - December 2008

DE-KIT

Dates(dd-nn)

Dates(dd-nm)

TW-ASGC

IT-INFN-CNAF

Data from SAM Monitoring. Plots show Reliability for last 6 Months Reliability is calculated as time_site_is_available / (total_time - time_site_is_scheduled_down)

IT-INFN-CNAF

■NA □M ■!R ■R

Data from SAM Monitoring. Plots show Reliability for last 6 Months

Reliability is calculated as time_site_is_available / (total_time - time_site_is_scheduled_down) Target reliability for each site is 95 % and Target for 8 best sites is 97 % from June, 2008

Dates(dd-nn)

UK-T1-RAL

UK-T1-RAL

MA DM BIR BR Average 97%

CERN

ES-PIC

NDGE

- Many problems to ramp up
 - Delays in procurements
 - Faulty equipment
 - Lack of power & planning

Serious Incidents.

In last six months

- Castor ASGC, CERN, CNAF, RAL
- dCache FZK, IN2P3, NL-T1
- Oracle ASGC, RAL
- Power ASGC, PIC, NL-T1, CNAF
- Cooling- CERN, IN2P3
- Network- CNAF, PIC, BNL, CERN
- Other CNAF, RAL, NL-T1,
- Fire ASGC

Tier1s will be down. Experiment models should cope.

Improving reliability

Simple actions

- Ensure sites have sufficient local monitoring; including now the grid service tests/results from SAM and experiments
- Ensure the response to alarms/tickets works and is appropriate test it
- Follow up on SIRs does your site potentially have the same problem???
- If you have a problem be honest about what went wrong so everyone can learn

Workshops

 To share experience and knowledge on how to run reliable/fault tolerant services

WLCG, HEPiX, etc.

Visits

Suggested that a team visits all Tier 1s (again!) to try and spread expertise ...

Resources ...

- New benchmark agreed
 - kSI2K → HEP-SPEC06 (based on SPEC06 c++ mix of FP and Int tests)
 - Shown to scale well for LHC experiments
 - Simple conversion factor
 - Sites will benchmark existing capacity; vendors must run this benchmark suite (simple to run)
 - Process underway to convert requirements/pledges, and accounting
 - Resource requests now given in kHS06
- Automated gathering of installed capacity
 - Process agreed between all parties will be put in place to allow better understanding of available capacity; changes in information system will also improve normalisation between sites

Validating the data...

GridMap - Visualizing the "State" of the Grid

Size of site rectangles is number of CPUs from BDII. Certified Production sites, grouped by regions.

WLCG timeline 2009-2010

STEP'09

- While CCRC'08 was seen as a success, it did not fully test all of the essential parts of the computing models
 - Tape recall for reprocessing at Tier 1s with >1 experiment at full rates
 - Large scale analysis
- Recommended by LHCC that there should be such tests, but difficulty in scheduling between experiments
 - Their schedules driven by detector related work
- At WLCG workshop in Prague agreed that the testing schedules could be aligned
- "Scale Testing for the Experimental Programme in 2009" STEP'09
 - (i.e. Will probably have increasing scale tests in future years)
 - May June 2009
 - Experiments have full programmes of testing, but will co-schedule taperecall/reprocessing at Tier 1s, and analysis scenarios
 - Key metrics being agreed now

Planning for after EGEE: EGI

Status

- Final blueprint published end December
- EGEE transition plan produced, helped in final blueprint
 - While cannot fully implement transition, clarifies expected state at end of project
- EGI.org+NGIs will take over the infrastructure transition plan
- EGI_DS Policy Board has selected Amsterdam as location for EGI.org
- Establishment of organisation:
 - Council of NGIs with an initial MoU (Lol in first instance)
 - EGI.org must appoint Director and for teams to develop transition plans etc.
- WLCG has made statement of support for the process and willingness to work with EGI.org and NGIs; expects to participate via the User Forum

EGI - timescales

- Timescales as presently understood
 - Early April: MoU and Lol available
 - End April: Lol signed by interested NGIs
 - May 6: (proto)EGI Council established
 - NGIs signing Lol are constituents
 - The EGI Project(s) team confirmed; this includes the project director(s) identification/confirmation (the person who will lead the team(s))
 - June: MoU signed, (full)EGI Council setup
 - "The Transition towards EGI" Deliverable published
 - March—May: EGI.org setup preparation
 - Includes search for EGI.org director and identification of EGI.org key personnel
 - June: EGI.org director appointed/identified
 - September: EGI.org setup at the latest (one month before the call closure)
 - July—December: EGI Project(s) preparation and submission
 - The MoU signing will continue after June, but the "latecomers" may not have direct influence on the composition of project preparation team nor on the selection of EGI.org director

Updated resource requirements

Based on the presently understood LHC schedule

- For planning purposes we assume
 - 2 resource periods (although no break between them)
 - "2009" Oct'09 → March'10
 - □ "2010" April'10 → March'11 (as before)
 - For data taking:
 - Apr'09 Sep'09: no LHC (simulation and cosmics)
 - Oct'09 Mar'10: 1.7x10^6 sec of physics
 - Apr'10 Oct'10: 4.3x10^6 sec of physics
 - Nov'10 Mar'11: LHC shutdown (simulation, reprocessing, etc)
 - Energy is limited to 5+5 TeV
 - There will be a heavy-ion run at the end of 2010

General comments

- Overall there is less LHC live time in this period than was anticipated for 2009+2010, but #events is only ~x2 less
- However,
 - We must ensure that the computing is not a limiting factor when data comes
 - See LHCC conclusions of WLCG mini-review in February
 - Significant effort is going into detector understanding now using cosmic ray data
- Early in 2009 we relaxed the requirement to have the 2009 resources in place by April
 - Although many of the (Tier 1) resources are actually in place now
 - In some cases this allows delayed procurement for better equipment
- Will now need to install new resources while data taking
- Intend to eventually provide a profile of ramp-up of resources (quarterly?) – but for this discussion present only the total needs for the 2 resource periods
 - Helps with installation schedules

Comparisons

- For each experiment (in the following tables):
 - Updated requirement for 2009 and 2010 compared with existing 2009 pledge and old 2010 requirement (since we do not have the split between experiments for pledges after 2009)
- Overall requirements
 - Compare 2009, 2010 new requirements with existing pledges
- The new requirements have not been reviewed by the LHCC, the C-RSG has had only a few days to look at them
- The pledges do not take into account:
 - Change in INFN planning, nor delay at NL-T1, and others where 2008 pledges not yet fully installed

ATLAS

ATLAS	2009 req	2009	2010 req	Old 2010
		pledge		req
CERN CPU	57	26.5	67	68
CERN disk	3.7	2.075	5.1	5.25
CERN tape	7.8	6.21	9.9	14.6
T1 CPU	90	120.9	227	234
T1 disk	24	19.86	36.7	41.3
T1 tape	11.3	14.72	14.8	22.7
T2 CPU	108	114	240	242
T2 disk	13.3	11.2	24.8	24.8

- Cosmic ray data in Q309 will produce 1.2PB (same as Aug-Nov 08)
- In 6x10^6 sec will collect 1.2x10^9 events → 2PB raw
- Raw stored on disk at T1s for a few weeks
- Plan for 990M full sim events and 2200M fast sim events
- CERN request was updated last Aug and was seen by RSG

Requirement >10% more/less than pledge/requirement

- Generally new requirements <= old requirements (except at CERN)
- Provide resource needs profile by quarter (see document)
- NB. The August 2008 request for 2009 while agreed by the RSG has never been validated by LHCC

CMS

CMS	2009 req	2009	2010 req	Old 2010
		pledge		req
CERN CPU	48.1	54.8	112.9	115.2
CERN disk	1.9	2.5	4.6	3.8
CERN	9.5	9.3	15.3	14.3
tape				
T1 CPU	53.5	63.7	119	139
T1 disk	6.5	8.4	14.1	15.4
T1 tape	10.5	16	21.6	23.2
T2 CPU	54.1	116	209.6	306
T2 disk	5	8.4	11.3	7.6

- Model foresees 300Hz data taking rate ...
- ... and CPU times assume higher lumi in '10
 - recCPU: 100→200 HSO6.s
 - simCPU: 360→540 HSO6.s
- Changes
 - 3 re-reconstr in each '09, '10
 - 40% overlap in PD datasets
 - Added storage needs for '09 cosmics

Requirement >10% more/less than pledge/requirement

Tier 0:

- Added 1 re-reco in each year
- Capacity for express stream
- Reco to finish in 2x runtime in '09
- Monitoring + commissioning is now 25% of total (was 10%)

Tier 1:

 Finish '09 re-reco in 1 month (was spread over full year)

Tier 2:

- Require 1.5 more MC events than raw: sw changes and bug fixes
- MC events produced in 8 months (can only start after Aug'09)

ALICE

ALICE	2009 req	2009	2010 req	Old 2010
		pledge		req
CERN CPU	42.8	46.4	46.8	49.4
CERN disk	2.4	4.5	4.5	4.7
CERN	3.7	7.3	6.7	11.6
tape				
T1 CPU	42.8	40.9	102.4	94
T1 disk	4.3	3.9	9.9	12
T1 tape	5.9	6.2	11.6	19.7
T2 CPU	36	39.9	80.8	100
T2 disk	4.4	2.82	12.4	4.3

- Will collect p-p data at ~maximum rate: 1.5x10^9 events at 300 Hz
 - Initial running will give luminosity required without special machine tuning – cleaner data for many physics topics
 - First pp run energy is important in interpolating results to full Pb-Pb energy
- Thus plan to collect large statistics pp in 2009-10
- Assume 1 month Pb-Pb at end of 2010
- Requirement >10% more/less than pledge/requirement
- Requests are within (or close to) existing '09 pledges except for Tier 2 disk
- For 2010 don't know actual pledge for ALICE, but generally pledges are significantly lower than requirement. (so final column should be mostly pink for T1+T2!)

LCG

LHCb

LHCb	2009 req	2009	2010 req	Old 2010
		pledge		req
CERN CPU	17	4.2	28	6.12
CERN disk	0.78	0.99	1.47	1.28
CERN	1.2	2.27	2.3	4.2
tape				
T1 CPU	31	20.2	49	27.36
T1 disk	2.8	2.7	4.4	3.25
T1 tape	1.3	3.2	2.9	5.86
T2 CPU	30	35.4	40	45.5
T2 disk	0.02	0.37	0.02	0.02

- Uncertainty in running mode (pile up)
 add contingency on event sizes
 and simulation time
- 2009 Simulation with assumed running conditions
- Early data with loose trigger cuts and many reprocessing passes – alignment/calib+early physics
- 2010 several reprocessing passes and many stripping passes
- Simulation over full period

- CERN increase due to need for fast feedback to detector of alignment/calibration + anticipation of local analysis use
- T1 CPU increase in 2010 due to more reprocessing
- T2 requirements decrease as less overall simulation needed

NB. Previously LHCb had presented integrated CPU needs – now here are shown the total capacity needed in each period – as for the other experiments

Summary

Summary	2009 req	2009 pledge	2010 req	Old 2010 req	2010 pledge
CERN CPU	164.9	131.9	254.7	238.7	213.6
CERN disk	8.78	10.07	15.67	15.03	13.4
CERN tape	22.2	25.1	34.2	44.7	43.1
T1 CPU	217.3	245.7	497.4	494.36	406.1
T1 disk	37.6	34.9	65.1	72	60.3
T1 tape	29	40.12	50.9	71.46	65.9
T2 CPU	228.1	305.3	570.4	693.5	475.8
T2 disk	22.72	22.79	48.52	36.72	35.2

Requirement >10% more/less than pledge

Live time is 1/3 of that anticipated for 2009/10 - so why so many resources needed?

- This is the first year of data taking and is a critical opportunity
 - Must be able to analyse and react quickly provide feedback to the detectors during data taking
- Machine profile is different from the original plans long run followed by a long shutdown
 - Must ensure that problems are resolved as soon as possible
 - There is now competition fast reaction is essential
- We have experience now in executing almost all of the computing models; and with real data (from cosmics)
 - Important lessons have been learned and the models refined
 - Analysis from disk is essential the idea of allowing tape access for many users is not supportable
 - Last year has shown more Tier 0/CAF resources are needed
- Use of cosmics (and real data) in 2008/9 experiments have made huge progress in understanding the detectors – would otherwise have been done with beam
 - Can thus more rapidly focus on extracting physics when collisions arrive

Implications:

- CPU needs driven by the instantaneous requirement, e.g. ability to react rapidly and provide early feedback during data taking
 - Experiments will take data at the intended rate, ~independent of luminosity, although complexity (and CPU) increases with luminosity
 - Need to provide rapid analysis and feedback; anticipate additional reconstruction passes
- Storage needs (disk) partly correlated with CPU needs, partly with longer term:
 - #events (#files) driven by trigger rate thus drives storage needs
 - Need sufficient disk to allow the rapid feedback analysis
 - Access to tape for analysis is not feasible must have sufficient disk to enable all
 of the urgent analyses that must be done and support the number of people
 involved
 - In this first year data must be kept on disk for some time for (re-)analysis
- Cosmic data has been used to understand the detectors in preparation for real data
 - This data is invaluable in understanding the history and trends of the detectors behaviour and cannot be simply discarded
 - Amount is significant (e.g. ATLAS ~2 PB)

Implications cont...

- Most of the experiments actually provide a resource profile over the full period April 2009 – March 2010; by quarters
 - This can help in scheduling installations and even purchases in some cases
 - But experience in procuring/testing/installing in time is not good
 - Much of the CPU is needed earlier, but storage capacity can be ramped to a certain extent
 - Most of the high quality useful data will come in the last quarter of running everything must be done to prepare for that

Summary

- WLCG service supports ever increasing workloads
- Significant incidents continue at fairly high level
 - Not all can be avoided
- Must take lessons from the reports and adapt
- Service reviews and STEP'09 will occupy time until LHC startup
- Requirements for 2009/10 have been reassessed in view of:
 - New LHC schedule and anticipated running profile
 - Experience with the computing models in full scale use in the last year and with cosmic data for several months
- Overall increased needs for CPU and disk (esp in 2010); reduced need for tape
- But: this is the first year of data taking which will be followed by a long shutdown – only opportunity to get it right
 - Must ensure that the computing resources are not a limiting factor compared with the huge investment in the accelerator and detectors